Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 320(2): 400-14, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18272166

ABSTRACT

Complex systems, simulating natural conditions like in groundwater, have rarely been studied, since measuring and in particular, modeling of such systems is very challenging. In this paper, the adsorption of the oxyanions of As(III) and As(V) on goethite has been studied in presence of various inorganic macro-elements (Mg(2+), Ca(2+), PO(3-)(4), CO(2-)(3)). We have used 'single-,' 'dual-,' and 'triple-ion' systems. The presence of Ca(2+) and Mg(2+) has no significant effect on As(III) oxyanion (arsenite) adsorption in the pH range relevant for natural groundwater (pH 5-9). In contrast, both Ca(2+) and Mg(2+) promote the adsorption of PO(3-)(4). A similar (electrostatic) effect is expected for the Ca(2+) and Mg(2+) interaction with As(V) oxyanions (arsenate). Phosphate is a major competitor for arsenate as well as arsenite. Although carbonate may act as competitor for both types of As oxyanions, the presence of significant concentrations of phosphate makes the interaction of (bi)carbonate insignificant. The data have been modeled with the charge distribution (CD) model in combination with the extended Stern model option. In the modeling, independently calculated CD values were used for the oxyanions. The CD values for these complexes have been obtained from a bond valence interpretation of MO/DFT (molecular orbital/density functional theory) optimized geometries. The affinity constants (logK) have been found by calibrating the model on data from 'single-ion' systems. The parameters are used to predict the ion adsorption behavior in the multi-component systems. The thus calibrated model is able to predict successfully the ion concentrations in the mixed 2- and 3-component systems as a function of pH and loading. From a practical perspective, data as well as calculations show the dominance of phosphate in regulating the As concentrations. Arsenite (As(OH)(3)) is often less strongly bound than arsenate (AsO(3-)(4)) but arsenite responses less strongly to changes in the phosphate concentration compared to arsenate, i.e., deltalogc(As(III))/deltalogc(PO(4)) approximately 0.4 and deltalogc(As(V))/deltalogc(PO(4)) approximately 0.9 at pH 7. Therefore, the response of As in a sediment on a change in redox conditions will be variable and will depend on the phosphate concentration level.


Subject(s)
Arsenic/chemistry , Calcium/chemistry , Carbonates/chemistry , Iron Compounds/chemistry , Magnesium/chemistry , Phosphates/chemistry , Anions/chemistry , Cations, Divalent/chemistry , Minerals
2.
Environ Sci Technol ; 41(16): 5620-5, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17874764

ABSTRACT

The As(V) and As(III) interaction with HCO3 has been studied for goethite systems using a pH and As concentration range that is relevant for field situations. Our study shows that dissolved bicarbonate may act as a competitor for both As(V) and As(III). In our closed systems, the largest effect of bicarbonate occurs at the lowest experimental pH values (pH approximately 6.5), which is related to the pH dependency of the carbonate adsorption process. The experimental data have been modeled with the charge distribution (CD) model. The CD model was separately parametrized for goethite with "single ion" adsorption data of HCO3, As(III), and As(V). The competitive effect of HCO3 on the As(III) and As(V) release could be predicted well. Application of the model shows that the natural As loading of aquifer materials (approximately < 0.01-0.1 micromol/m2 or < 1-5 mg/kg) is at least about > 1-2 orders of magnitude smaller than the As loading based on the competition of As-HCO3 alone. It indicates that another, very prominent competitor, like phosphate and natural organic matter, will strongly contribute to the control of As in natural systems.


Subject(s)
Arsenic/chemistry , Bicarbonates/chemistry , Iron Compounds/chemistry , Adsorption , Arsenic/analysis , Carbonates/chemistry , Environment , Hydrogen-Ion Concentration , Minerals , Models, Chemical , Solutions
3.
J Colloid Interface Sci ; 302(1): 62-75, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16857207

ABSTRACT

The adsorption of As(III) and As(V) on goethite has been studied as a function of pH and loading. The data can be successfully described with the charge distribution (CD) model (extended Stern layer option) using realistic species observed by EXAFS. The CD values have been derived theoretically. Therefore, the Brown bond valence approach has been applied to MO/DFT optimized geometries of a series of hydrated complexes of As(III) and As(V) with Fe(III) (hydr)oxide. The calculated ionic CD values have been corrected for the effect of dipole orientation of interfacial water, resulting in overall interfacial CD coefficients that can be used to describe the surface speciation as a function of pH and loading. For As(III), the main surface species is a bidentate complex and a minor contribution of a monodentate species is found, which is in agreement with EXAFS. The CD values have also been fitted. Such an analysis of the adsorption data resulted in the same surface species. The fitted CD values for the bidentate complex points to the presence of strong AsO bonds with the surface and a weaker AsOH bond with the free OH ligand. This agrees quantitatively with the MO/DFT optimized geometry. Interpretation of free fitted CD values for As(V) binding suggests that the main surface species is a non-protonated bidentate complex (B) with a contribution of a singly protonated surface complex (MH) at sub-neutral pH and high loading. In addition, a protonated bidentate surface complex (BH) may be present. The same species are found if the theoretical CD values are used in the data analysis. The pH dependency of surface speciation is strongly influenced by the charge attribution of adsorbed species to the electrostatic surface plane while the effect of loading is primarily controlled by the amount of charge attributed to the 1-plane, illustrating the different action of the CD value. The MO/DFT geometry optimizations furthermore suggest that for As(V) the B, MH and BH surface complexes may have very similar AsFe distances which may complicate the interpretation of EXAFS data.


Subject(s)
Arsenates/chemistry , Arsenites/chemistry , Adsorption , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Minerals , Models, Chemical , Models, Molecular , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...