Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948733

ABSTRACT

Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.

2.
J Neurosci ; 2021 05 13.
Article in English | MEDLINE | ID: mdl-34006587

ABSTRACT

Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCI) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell-type specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole cell patch clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT7 receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT2B/2C receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI.SIGNIFICANCE STATEMENTCurrent therapies to gain locomotor control after SCI target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.

3.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800863

ABSTRACT

The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.


Subject(s)
Afferent Pathways/physiology , Interneurons/physiology , Movement/physiology , Neural Inhibition/physiology , Sensation/physiology , Sensory Gating/physiology , Spinal Cord/cytology , Animals , Anterior Horn Cells/chemistry , Anterior Horn Cells/classification , Anterior Horn Cells/physiology , Humans , Interneurons/chemistry , Interneurons/classification , Models, Neurological , Motor Neurons/physiology , Movement Disorders/physiopathology , Nerve Fibers/physiology , Nerve Tissue Proteins/analysis , Neuropeptides/analysis , Posterior Horn Cells/chemistry , Posterior Horn Cells/classification , Sensation Disorders/physiopathology , Sensory Receptor Cells/physiology , Spinal Cord/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...