Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(24): 15744-15753, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838260

ABSTRACT

At relatively low concentrations in aqueous solution, Fe3+, Fe2+, Cu2+, and Ni2+ quench the photoluminescence (PL) of the undecenoic acid-capped silicon (Si) nanocrystals. The PL could be restored by adding a chelating agent, such as ethylenediaminetetraacetic acid (EDTA), to remove the ions. Fe3+ and Cu2+ also significantly increase the PL lifetime. Other metal ions, including Cd2+, Mn2+, Pb2+, Zn2+, In3+, K+, and Ca2+, had no effect on the Si nanocrystal PL. The limits of detection (LODs) for Fe3+ and Cu2+ of 370 and 150 nM, respectively, are low enough for metal ion sensing applications.

2.
ACS Appl Mater Interfaces ; 15(51): 59358-59369, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103256

ABSTRACT

Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H2 barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS2), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS2) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS2 and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS2 and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.

3.
ACS Nano ; 16(4): 6023-6033, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35357114

ABSTRACT

Two-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < ℏω < 1.91 eV (wavelength 850 > λ > 650 nm) above the two-photon band gap Eg(QD)/2, and at a representative photon energy ℏω = 0.99 eV (λ = 1250 nm) below this gap. Two-photon excited photoluminescence (2PE-PL) spectra of nc-SiQDs with diameters d = 1.8 ± 0.2 nm and d = 2.3 ± 0.3 nm, each passivated with 1-dodecene and dispersed in toluene, are calibrated in strength against 2PE-PL from a known concentration of Rhodamine B dye in methanol. The 2PA cross section is observed to be smaller for the smaller diameter nanocrystals, and the onset of 2PA is observed to be blue shifted from the two-photon indirect band gap of bulk Si, as expected for quantum confinement of excitons. The efficiencies of nc-SiQDs for bioimaging using 2PE-PL are simulated in various biological tissues and compared to efficiencies of other quantum dots and molecular fluorophores and found to be comparable or superior at greater depths.


Subject(s)
Nanoparticles , Quantum Dots , Silicon/chemistry , Quantum Dots/chemistry , Photons , Nanoparticles/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...