Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 31: 494-511, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36865086

ABSTRACT

With thousands of patients worldwide, CAPN3 c.550delA is the most frequent mutation causing severe, progressive, and untreatable limb girdle muscular dystrophy. We aimed to genetically correct this founder mutation in primary human muscle stem cells. We designed editing strategies providing CRISPR-Cas9 as plasmid and mRNA first in patient-derived induced pluripotent stem cells and applied this strategy then in primary human muscle stem cells from patients. Mutation-specific targeting yielded highly efficient and precise correction of CAPN3 c.550delA to wild type for both cell types. Most likely a single cut generated by SpCas9 resulted in a 5' staggered overhang of one base pair, which triggered an overhang-dependent base replication of an A:T at the mutation site. This recovered the open reading frame and the CAPN3 DNA sequence was repaired template-free to wild type, which led to CAPN3 mRNA and protein expression. Off-target analysis using amplicon sequencing of 43 in silico predicted sites demonstrates the safety of this approach. Our study extends previous usage of single cut DNA modification since our gene product has been repaired into the wild-type CAPN3 sequence with the perspective of a real cure.

3.
Mol Ther Nucleic Acids ; 28: 47-57, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35356683

ABSTRACT

Muscular dystrophies are approximately 50 devastating, untreatable monogenic diseases leading to progressive muscle degeneration and atrophy. Gene correction of transplantable cells using CRISPR/Cas9-based tools is a realistic scenario for autologous cell replacement therapies to restore organ function in many genetic disorders. However, muscle stem cells have so far lagged behind due to the absence of methods to isolate and propagate them and their susceptibility to extensive ex vivo manipulations. Here, we show that mRNA-based delivery of SpCas9 and an adenine base editor results in up to >90% efficient genome editing in human muscle stem cells from many donors regardless of age and gender and without any enrichment step. Using NCAM1 as an endogenous reporter locus expressed by all muscle stem cells and whose knockout does not affect cell fitness, we show that cells edited with mRNA fully retain their myogenic marker signature, proliferation capacity, and functional attributes. Moreover, mRNA-based delivery of a base editor led to the highly efficient repair of a muscular dystrophy-causing SGCA mutation in a single selection-free step. In summary, our work establishes mRNA-mediated delivery of CRISPR/Cas9-based tools as a promising and universal approach for taking gene edited muscle stem cells into clinical application to treat muscle disease.

4.
Stem Cell Reports ; 17(2): 413-426, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35063129

ABSTRACT

Conventional reprogramming methods rely on the ectopic expression of transcription factors to reprogram somatic cells into induced pluripotent stem cells (iPSCs). The forced expression of transcription factors may lead to off-target gene activation and heterogeneous reprogramming, resulting in the emergence of alternative cell types and aberrant iPSCs. Activation of endogenous pluripotency factors by CRISPR activation (CRISPRa) can reduce this heterogeneity. Here, we describe a high-efficiency reprogramming of human somatic cells into iPSCs using optimized CRISPRa. Efficient reprogramming was dependent on the additional targeting of the embryo genome activation-enriched Alu-motif and the miR-302/367 locus. Single-cell transcriptome analysis revealed that the optimized CRISPRa reprogrammed cells more directly and specifically into the pluripotent state when compared to the conventional reprogramming method. These findings support the use of CRISPRa for high-quality pluripotent reprogramming of human cells.


Subject(s)
Cellular Reprogramming/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Alu Elements/genetics , Gene Expression Profiling , Genetic Loci , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...