Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37237622

ABSTRACT

Heart rate variability (HRV) is commonly intended as the variation in the heart rate (HR), and it is evaluated in the time and frequency domains with various well-known methods. In the present paper, the heart rate is considered as a time domain signal, at first as an abstract model in which the HR is the instantaneous frequency of an otherwise periodic signal, such as with an electrocardiogram (ECG). In this model, the ECG is assumed to be a frequency modulated signal, or carrier signal, where HRV or HRV(t) is the time-domain signal which is frequency modulating the carrier ECG signal around its average frequency. Hence, an algorithm able to frequency demodulate the ECG signal to extract the signal HRV(t) is described, with possibly enough time resolution to analyse fast time-domain variations in the instantaneous HR. After exhaustive testing of the method on simulated frequency modulated sinusoidal signals, the new procedure is eventually applied on actual ECG tracings for preliminary nonclinical testing. The purpose of the work is to use this algorithm as a tool and a more reliable method for the assessment of heart rate before any further clinical or physiological analysis.

2.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632029

ABSTRACT

Most students and researchers with limited funding are often looking for simple and low-cost devices for the acquisition of the electromyogram signal (EMG) in an educational or research setting. Thus, off-the-shelf devices are used and they have already been described in the literature, but they are used without considering their real performances, which are, in general, quite poor from the electronic and signal processing points of view. It is the purpose of this communication to present the evidence of these issues, and to describe an improved version of the "classical" duo, composed of the common ECG/EMG Olimex board and the Arduino microprocessor board. In this case, the Arduino-DUE is used. Three main points are highlighted in this paper: (a) the bandpass characteristics of the ECG/EMG Olimex board and how they can be improved to cope with EMG bandwidth requirements; (b) the increase in sampling frequency of the signal; and, finally, (c) the possibility of automatic detection of more ECG/EMG Olimex boards installed at the same time as the shields on the Arduino-DUE board. Very simple and low-cost modifications on the ECG/EMG Olimex board could deliver a much better performing multichannel EMG acquisition system, suitable for educational classroom experiments and early proof-of-concept research.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Electromyography , Humans , Microcomputers
3.
J Aerosol Med Pulm Drug Deliv ; 31(1): 33-41, 2018 02.
Article in English | MEDLINE | ID: mdl-28683216

ABSTRACT

BACKGROUND: A breath-synchronized nebulization option that could potentially improve drug delivery during noninvasive positive pressure ventilation (NIPPV) is currently not available on single-limb circuit bilevel ventilators. The aim of this study was to compare urinary excretion of amikacin following aerosol delivery with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. MATERIALS AND METHODS: A crossover clinical trial involving 6 noninvasive ventilated healthy volunteers (mean age of 32.3 ± 9.5 y) randomly assigned to both vibrating mesh nebulization modes was conducted: Inspi-Neb delivered aerosol during only the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. All subjects inhaled amikacin solution (500 mg/4 mL) during NIPPV using a single-limb bilevel ventilator (inspiratory positive airway pressure: 12 cm H2O, and expiratory positive airway pressure: 5 cm H2O). Pulmonary drug delivery of amikacin following both nebulization modes was compared by urinary excretion of drug for 24 hours post-inhalation. RESULTS: The total daily amount of amikacin excreted in the urine was significantly higher with Inspi-Neb (median: 44.72 mg; interquartile range [IQR]: 40.50-65.13) than with Conti-Neb (median: 40.07 mg; IQR: 31.00-43.73), (p = 0.02). The elimination rate constant of amikacin (indirect measure of the depth of drug penetration into the lungs) was significantly higher with Inspi-Neb (median: 0.137; IQR: 0.113-0.146) than with Conti-Neb (median: 0.116; IQR: 0.105-0.130), (p = 0.02). However, the mean pulmonary drug delivery rate, expressed as the ratio between total daily urinary amount of amikacin and nebulization time, was significantly higher with Conti-Neb (2.03 mg/min) than with Inspi-Neb (1.09 mg/min) (p < 0.01). CONCLUSIONS: During NIPPV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization may improve pulmonary drug delivery compared with conventional continuous vibrating mesh nebulization.


Subject(s)
Amikacin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drug Delivery Systems , Noninvasive Ventilation , Administration, Inhalation , Adult , Aerosols , Amikacin/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , Cross-Over Studies , Double-Blind Method , Humans , Lung/metabolism , Male , Middle Aged , Nebulizers and Vaporizers , Tissue Distribution , Vibration , Young Adult
4.
J Aerosol Med Pulm Drug Deliv ; 29(4): 328-36, 2016 08.
Article in English | MEDLINE | ID: mdl-27310926

ABSTRACT

UNLABELLED: Backround: Coupling nebulization with noninvasive ventilation (NIV) has been shown to be effective in patients with respiratory diseases. However, a breath-synchronized nebulization option that could potentially improve drug delivery by limiting drug loss during exhalation is currently not available on bilevel ventilators. The aim of this in vitro study was to compare aerosol delivery of amikacin with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. METHODS: Using an adult lung bench model of NIV, we tested a vibrating mesh device coupled with a bilevel ventilator in both nebulization modes. Inspi-Neb delivered aerosol only during the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. The nebulizer was charged with amikacin solution (250 mg/3 mL) and placed at two different positions: between the lung and exhalation port and between the ventilator and exhalation port. Inhaled, expiratory wasted and circuit lost doses were assessed by residual gravimetric method. Particle size distribution of aerosol delivered at the outlet of the ventilator circuit during both nebulization modes was measured by laser diffraction method. RESULTS: Regardless of the nebulizer position, Inspi-Neb produced higher inhaled dose (p < 0.01; +6.3% to +16.8% of the nominal dose), lower expiratory wasted dose (p < 0.05; -2.7% to -42.6% of the nominal dose), and greater respirable dose (p < 0.01; +8.4% to +15.2% of the nominal dose) than Conti-Neb. The highest respirable dose was found with the nebulizer placed between the lung and exhalation port (48.7% ± 0.3% of the nominal dose). CONCLUSIONS: During simulated NIV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization improves respirable dose and reduces drug loss of amikacin compared with continuous vibrating mesh nebulization.


Subject(s)
Amikacin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drug Delivery Systems/instrumentation , Inhalation , Lung/physiology , Nebulizers and Vaporizers , Noninvasive Ventilation/instrumentation , Ventilators, Mechanical , Administration, Inhalation , Adult , Aerosols , Amikacin/chemistry , Anti-Bacterial Agents/chemistry , Equipment Design , Exhalation , Humans , Lung/anatomy & histology , Models, Anatomic , Particle Size , Vibration
5.
Behav Brain Funct ; 9: 41, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24165294

ABSTRACT

BACKGROUND: In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. METHODS: Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. RESULTS: The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). CONCLUSIONS: We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions.


Subject(s)
Brain Neoplasms/physiopathology , Bruxism/physiopathology , Dystonic Disorders/physiopathology , Hemangioma, Cavernous, Central Nervous System/physiopathology , Pineal Gland/physiopathology , Trigeminal Nerve/physiopathology , Adult , Brain Neoplasms/pathology , Bruxism/pathology , Dystonic Disorders/pathology , Evoked Potentials, Motor/physiology , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Magnetic Resonance Imaging , Male , Masseter Muscle/physiopathology , Pineal Gland/pathology , Reaction Time/physiology , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...