Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 034106, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012783

ABSTRACT

A new sample environment, called Bio-Oven, has been built for the Neutron Spin Echo (NSE) Spectrometer J-NSE Phoenix. It provides active temperature control and the possibility to perform Dynamic Light Scattering (DLS) measurements during the neutron measurement. DLS provides diffusion coefficients of the dissolved nanoparticles, and thus one can monitor the aggregation state of the sample on a time scale of minutes during the spin echo measurement times on the order of days. This approach helps to validate the NSE data or to replace the sample when its aggregation state influences the spin echo measurement results. The new Bio-Oven is an in situ DLS setup based on optical fibers decoupling the free space optics around the sample cuvette in a lightproof casing from the laser sources and the detectors. It collects light from three scattering angles simultaneously. Six different values of momentum transfer can be accessed by switching between two different laser colors. Test experiments were performed with silica nanoparticles with diameters ranging from 20 nm up to 300 nm. Their hydrodynamic radii were determined from DLS measurements and compared with the ones obtained by a commercial particle sizer. It was demonstrated that also the static light scattering signal can be processed and gives meaningful results. The protein sample apomyoglobin was used for a long-term test and in a first neutron measurement using the new Bio-Oven. The results prove that the aggregation state of the sample can be followed using in situ DLS along with the neutron measurement.

2.
J R Soc Interface ; 9(76): 2845-55, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22696485

ABSTRACT

Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the ß-subunits.


Subject(s)
Adaptation, Biological/physiology , Alligators and Crocodiles/physiology , Chickens/physiology , Hemoglobins/chemistry , Platypus/physiology , Protein Conformation , Temperature , Amino Acid Sequence , Animals , Body Temperature , Circular Dichroism , Computational Biology , Computer Simulation , Humans , Molecular Sequence Data , Neutron Diffraction , Sequence Alignment , Species Specificity , Thermodynamics
3.
Biophys J ; 96(12): 5073-81, 2009 Jun 17.
Article in English | MEDLINE | ID: mdl-19527667

ABSTRACT

A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.


Subject(s)
Body Temperature , Hemoglobins/chemistry , Water/chemistry , Elasticity , Humans , Neutrons , Powders , Solutions
4.
Eur Biophys J ; 38(5): 589-600, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19238378

ABSTRACT

UNLABELLED: When aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). IN CONCLUSION: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins.


Subject(s)
Body Temperature , Hemoglobins/chemistry , Hemoglobins/metabolism , Erythrocyte Volume , Humans , Magnetic Resonance Spectroscopy , Osmotic Pressure , Phase Transition , Temperature , Water/metabolism
5.
Faraday Discuss ; 141: 117-30; dsicussion 175-207, 2009.
Article in English | MEDLINE | ID: mdl-19227354

ABSTRACT

An integrated picture of hydration shell dynamics and of its coupling to functional macromolecular motions is proposed from studies on a soluble protein, on a membrane protein in its natural lipid environment, and on the intracellular environment in bacteria and red blood cells. Water dynamics in multimolar salt solutions was also examined, in the context of the very slow water component previously discovered in the cytoplasm of extreme halophilic archaea. The data were obtained from neutron scattering by using deuterium labelling to focus on the dynamics of different parts of the complex systems examined.


Subject(s)
Carrier Proteins/chemistry , Neutron Diffraction , Water/chemistry , Bacteriorhodopsins/chemistry , Carrier Proteins/metabolism , Cell Adhesion/physiology , Cytoplasm/chemistry , Cytoplasm/metabolism , Deuterium/chemistry , Erythrocytes/metabolism , Escherichia coli/metabolism , Haloarcula marismortui/metabolism , Maltose-Binding Proteins , Membrane Lipids/chemistry , Purple Membrane/chemistry , Purple Membrane/metabolism , Salts/chemistry , Solubility , Solutions/chemistry , Temperature , Water/metabolism , Wettability
6.
Eur Biophys J ; 38(2): 237-44, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18853152

ABSTRACT

Changes of molecular dynamics in the alpha-to-beta transition associated with amyloid fibril formation were explored on apomyoglobin (ApoMb) as a model system. Circular dichroism, neutron and X-ray scattering experiments were performed as a function of temperature on the protein, at different solvent conditions. A significant change in molecular dynamics was observed at the alpha-to-beta transition at about 55 degrees C, indicating a more resilient high temperature beta structure phase. A similar effect at approximately the same temperature was observed in holo-myoglobin, associated with partial unfolding and protein aggregation. A study in a wide temperature range between 20 and 360 K revealed that a dynamical transition at about 200 K for motions in the 50 ps time scale exists also for a hydrated powder of heat-denatured aggregated ApoMb.


Subject(s)
Apoproteins/chemistry , Models, Molecular , Myoglobin/chemistry , Protein Folding , Protein Multimerization , Amyloidosis/physiopathology , Circular Dichroism , Crystallography, X-Ray , Neutron Diffraction , Pharmaceutical Solutions , Protein Structure, Tertiary , Temperature , Thermodynamics
7.
Biophys J ; 95(11): 5449-61, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18708462

ABSTRACT

A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.


Subject(s)
Body Temperature , Erythrocytes/metabolism , Hemoglobins/metabolism , Diffusion , Elasticity , Humans , Neutron Diffraction , Protein Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...