Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2318706121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968110

ABSTRACT

Variable viscosity in Earth's mantle exerts a fundamental control on mantle convection and plate tectonics, yet rigorously constraining the underlying parameters has remained a challenge. Inverse methods have not been sufficiently robust to handle the severe viscosity gradients and nonlinearities (arising from dislocation creep and plastic failure) while simultaneously resolving the megathrust and bending slabs globally. Using global plate motions as constraints, we overcome these challenges by combining a scalable nonlinear Stokes solver that resolves the key tectonic features with an adjoint-based Bayesian approach. Assuming plate cooling, variations in the thickness of continental lithosphere, slabs, and broad scale lower mantle structure as well as a constant grain size through the bulk of the upper mantle, a good fit to global plate motions is found with a nonlinear upper mantle stress exponent of 2.43 [Formula: see text] 0.25 (mean [Formula: see text] SD). A relatively low yield stress of 151 [Formula: see text] 19 MPa is required for slabs to bend during subduction and transmit a slab pull that generates asymmetrical subduction. The recovered long-term strength of megathrusts (plate interfaces) varies between different subduction zones, with South America having a larger strength and Vanuatu and Central America having lower values with important implications for the stresses driving megathrust earthquakes.

2.
Proc Natl Acad Sci U S A ; 119(13): e2202084119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35316138

ABSTRACT

Magnetic fields with quasi-symmetry are known to provide good confinement of charged particles and plasmas, but the extent to which quasi-symmetry can be achieved in practice has remained an open question. Recent work [M. Landreman and E. Paul, Phys. Rev. Lett. 128, 035001, 2022] reports the discovery of toroidal magnetic fields that are quasi-symmetric to orders-of-magnitude higher precision than previously known fields. We show that these fields can be accurately produced using electromagnetic coils of only moderate engineering complexity, that is, coils that have low curvature and that are sufficiently separated from each other. Our results demonstrate that these new quasi-symmetric fields are relevant for applications requiring the confinement of energetic charged particles for long time scales, such as nuclear fusion. The coils' length plays an important role for how well the quasi-symmetric fields can be approximated. For the longest coil set considered and a mean field strength of 1 T, the departure from quasi-symmetry is of the order of Earth's magnetic field. Additionally, we find that magnetic surfaces extend far outside the plasma boundary used by Landreman and Paul, providing confinement far from the core. Simulations confirm that the magnetic fields generated by the new coils confine particles with high kinetic energy substantially longer than previously known coil configurations. In particular, when scaled to a reactor, the best found configuration loses only 0.04% of energetic particles born at midradius when following guiding center trajectories for 200 ms.

3.
Drug Test Anal ; 13(9): 1668-1677, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089570

ABSTRACT

The exogenous anabolic-androgenic steroid (AAS) stanozolol stays one of the most detected substances in professional sports. Its detection is a fundamental part of doping analysis, and the analysis of this steroid has been intensively investigated for a long time. This contribution to the detection of stanozolol doping describes for the first time the unambiguous proof for the existence of 17-epistanozolol-1'N-glucuronide and 17-epistanozolol-2'N-glucuronide in stanozolol-positive human urine samples due to the access to high-quality reference standards. Examination of excretion study samples shows large detection windows for the phase-II metabolites stanozolol-1'N-glucuronide and 17-epistanozolol-1'N-glucuronide up to 12 days and respectively up to almost 28 days. In addition, we present appropriate validation parameters for the analysis of these metabolites using a fully automatic method online solid-phase extraction (SPE) method already published before. Limits of identification (LOIs) as low as 100 pg/ml and other validation parameters like accuracy, precision, sensitivity, robustness, and linearity are given.


Subject(s)
Anabolic Agents/analysis , Doping in Sports/prevention & control , Stanozolol/analysis , Substance Abuse Detection/methods , Anabolic Agents/metabolism , Anabolic Agents/urine , Female , Glucuronides/analysis , Glucuronides/urine , Humans , Limit of Detection , Male , Solid Phase Extraction/methods , Stanozolol/metabolism , Stanozolol/urine , Time Factors
4.
Science ; 329(5995): 1033-8, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20798311

ABSTRACT

Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

5.
IEEE Trans Med Imaging ; 29(4): 998-1011, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19923042

ABSTRACT

The aim of this paper is to introduce a variational image segmentation method for assessing the aberrant crypt foci (ACF) in the human colon captured in vivo by endoscopy. ACF are thought to be precursors for colorectal cancer, and therefore their early detection may play an important clinical role. We enhance the active contours without edges model of Chan and Vese to account for the ACF's particular structure. We employ level sets to represent the segmentation boundaries and discretize in space by finite elements and in (artificial) time by finite differences. The approach is able to identify the ACF, their boundaries, and some of the internal crypts' orifices.


Subject(s)
Aberrant Crypt Foci/pathology , Algorithms , Colorectal Neoplasms/pathology , Endoscopy, Gastrointestinal/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Math Med Biol ; 26(2): 165-85, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19351791

ABSTRACT

In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.


Subject(s)
Eye/pathology , Models, Biological , Scleral Buckling/methods , Algorithms , Biomechanical Phenomena , Computer Simulation , Elasticity , Humans , Pressure , Retinal Detachment/prevention & control , Retinal Detachment/surgery , Stress, Mechanical
7.
Phys Rev Lett ; 92(19): 196801, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15169429

ABSTRACT

The phonon-induced dephasing dynamics in optically excited semiconductor quantum dots is studied within the frameworks of the independent boson model and optimal control. We show that appropriate tailoring of laser pulses allow complete control of the optical excitation despite the phonon dephasing, a finding in marked contrast to other environment couplings.

SELECTION OF CITATIONS
SEARCH DETAIL
...