Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vox Sang ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754952

ABSTRACT

BACKGROUND AND OBJECTIVES: Blood safety measures used by blood establishments to increase blood component safety can be validated using Transfusion-Relevant Bacterial Reference Strains (TRBRS). Ultra-cold storage conditions and manual preparation of the current TRBRS may restrict their practical use. To address this issue, the ISBT Transfusion-Transmitted Infectious Diseases Working Party's Bacterial Subgroup organized an international study to validate TRBRS in a user-friendly, lyophilised format. MATERIALS AND METHODS: Two bacterial strains Klebsiella pneumoniae PEI-B-P-08 and Staphylococcus aureus PEI-B-P-63 were manufactured as lyophilised material. The lyophilised bacteria were distributed to 11 different labs worldwide to assess the robustness for enumeration, identification and determination of growth kinetics in platelet concentrates (PCs). RESULTS: Production of lyophilised TRBRS had no impact on the growth properties compared with the traditional format. The new format allows a direct low-quantity spiking of approximately 30 bacteria in PCs for transfusion-relevant experiments. In addition, the lyophilised bacteria exhibit long-term stability across a broad temperature range and can even be directly rehydrated in PCs without losing viability. Interlaboratory comparative study demonstrated the robustness of the new format as 100% of spiked PC exhibited growth. CONCLUSION: Lyophilised TRBRS provide a user-friendly material for transfusion-related studies. TRBRS in the new format have improved features that may lead to a more frequent use in the quality control of transfusion-related safety measures in the future.

2.
Vox Sang ; 119(7): 693-701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631895

ABSTRACT

BACKGROUND AND OBJECTIVES: Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study. MATERIALS AND METHODS: Eight laboratories participated in this study with a pool/split approach. Two split PC units were spiked with ~25 colony forming units (CFU)/PC of Staphylococcus aureus, Klebsiella pneumoniae, Serratia liquefaciens, Pseudomonas fluorescens and Listeria monocytogenes. One unit was stored under agitation at 20-24°C/7 days while the second was stored at 1-6°C/no agitation for 21 days. PC were sampled periodically to determine bacterial loads. Five laboratories repeated the study with PC inoculated with lyophilized inocula (~30 CFU/mL) of S. aureus and K. pneumoniae. RESULTS: All species proliferated in PC stored at 20-24°C, reaching concentrations of ≤109 CFU/mL by day 7. Psychrotrophic P. fluorescens and S. liquefaciens proliferated in CSP to ~106 CFU/mL and ~105 CFU/mL on days 10 and 17 of storage, respectively, followed by L. monocytogenes, which reached ~102 CFU/mL on day 21. S. aureus and K. pneumoniae did not grow in CSP. CONCLUSION: Psychrotrophic bacteria, which are relatively rare contaminants in PC, proliferated in CSP, with P. fluorescens reaching clinically significant levels (≥105 CFU/mL) before day 14 of storage. Cold storage reduces bacterial risk of PC to levels comparable with RBC units. Safety of CSP could be further improved by implementing bacterial detection systems or pathogen reduction technologies if storage is beyond 10 days.


Subject(s)
Blood Platelets , Blood Preservation , Humans , Blood Platelets/microbiology , Blood Preservation/methods , Cold Temperature , Bacteria/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...