Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(1): 1117-1129, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38115197

ABSTRACT

This study demonstrated the importance of identifying the optimal balance of hydrophilic and hydrophobic moieties in amphiphilic coatings to achieve fouling-release (FR) performance that surpasses that of traditional hydrophobic marine coatings. While there have been many reports on fouling-release properties of amphiphilic surfaces, the offered understanding is often limited. Hence, this work is focused on further understanding of the amphiphilic surfaces. Poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) were used to create a series of noncross-linked amphiphilic additives that were then added to a hydrophobic-designed siloxane-polyurethane (SiPU) FR system. After being characterized by ATR-FTIR, XPS, contact angle analysis, and AFM, the FR performance was evaluated by using different marine organisms. The assessments showed that the closer the hydrophilic and hydrophobic moieties in a system reached a relatively equalized level, the more desirable the FR performance of the coating system became. A balanced ratio of hydrophilicity-hydrophobicity in the system at around 10-15 wt % of each component had the best FR performance and was comparable to or better than commercial FR coatings.

2.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723337

ABSTRACT

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

4.
ACS Appl Mater Interfaces ; 14(32): 37229-37247, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35939765

ABSTRACT

Combining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts. ATR-FTIR, contact angle and surface energy measurements, and AFM were performed to assess changes in surface composition, wettability, and morphology. AF/FR properties were evaluated using laboratory biological assays involving Cellulophaga lytica, Navicula incerta, Ulva linza, Amphibalanus amphitrite, and Geukensia demissa. The surfaces of these coatings varied significantly upon changes in PDMS and PEG content in the coating matrix, as well as with changes in SMAA incorporation. AF/FR properties were also significantly changed, with formulations containing the highest amounts of SMAA showing very high removal properties compared to other experimental formulations, in some cases better than that of commercial standard FR coatings.


Subject(s)
Biofouling , Siloxanes , Biofouling/prevention & control , Polymers , Polyurethanes , Surface Properties
5.
Pharmaceutics ; 14(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893806

ABSTRACT

Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young's modulus values of the polymer. Load-displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties.

6.
Sci Rep ; 12(1): 11799, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35821390

ABSTRACT

For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded with oil via two different methods. One method used a traditional, one-pot pre-cure oil addition approach (o-PDMS) and another method used a newer post-cure infusion approach (i-PDMS). The latter displays a substantial improvement in biofouling prevention performance that exceeds established commercial silicone-based fouling-release coating standards. We interpret the differences in performance between one-pot and infused PDMS by developing a mechanistic model based on the Flory-Rehner theory of swollen polymer networks. Using this model, we propose that the chemical potential of the incorporated oil is a key consideration for the design of future fouling-release coatings, as the improved performance is driven by the formation and stabilization of an anti-adhesion oil overlayer on the polymer surface.


Subject(s)
Biofouling , Silicone Elastomers , Biofouling/prevention & control , Elastomers/chemistry , Materials Testing , Polymers , Silicone Elastomers/chemistry , Silicone Oils
7.
Biofouling ; 38(4): 384-400, 2022 04.
Article in English | MEDLINE | ID: mdl-35655420

ABSTRACT

Grooming may be an effective technique to control marine biofouling without damaging the coating or discharging active ingredients into the environment. This study assessed the grooming performance of three experimental biocide-free siloxane polyurethane (SiPU) fouling-release coatings. Coatings were statically immersed in Port Canaveral, Florida, and groomed every two weeks for five months using three different brush types. The ungroomed panels became heavily fouled with biofilm, tubeworms, barnacles, and bryozoans. Two of the brushes were able to control the fouling with a coverage of <5%. The commercial silicone elastomer coating was damaged from grooming procedures, while the SiPU coatings were not. Laboratory biological assays were carried out and mirrored the grooming results. Through surface characterization techniques, it was concluded that the coatings were unaffected by the grooming procedures. This study shows that marine fouling on durable SiPU fouling-release coatings can be controlled via grooming without damage or changing the surface properties.


Subject(s)
Biofouling , Thoracica , Animals , Biofilms , Biofouling/prevention & control , Grooming , Polyurethanes , Ships , Siloxanes , Surface Properties
8.
Biofouling ; 38(3): 260-270, 2022 03.
Article in English | MEDLINE | ID: mdl-35332830

ABSTRACT

Siloxane-polyurethane hybrid coatings were assessed for biofouling control caused by freshwater mussels. Invasive species such as zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels have rapidly spread through the waterways in the United States causing major concerns in reservoir infrastructure and freshwater lakes. Current coating solutions such as biocidal anti-fouling coatings are not suitable given the released biocides which may accumulate in reservoirs. Biocide free fouling release coatings based on silicone elastomers do not have adequate mechanical durability. The siloxane-polyurethane (SiPU) coatings were evaluated using model organism laboratory assays and real-life performance was evaluated in the freshwater field environment. Two coating compositions displayed excellent performance in field trials for up to 2+ years. The surface analysis experiments of the coatings indicate that the morphology of the coatings is affected by the formulations' solvent choice. These coatings show great promise in mitigating biofouling predominated by freshwater mussels.


Subject(s)
Bivalvia , Dreissena , Animals , Biofilms , Lakes , Polyurethanes , Siloxanes
9.
Bioengineering (Basel) ; 9(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35200400

ABSTRACT

Governed by established structure-property relationships, peptide motifs comprising major ampullate spider silk confer a balance of strength and extensibility. Other biologically inspired small peptide motifs correlated to specific functionalities can be combined within these units to create designer silk materials with new hybrid properties. In this study, a small basic peptide, (ARKKAAKA) known to both bind heparin and mimic an antimicrobial peptide, was genetically linked to a protease-resistant, mechanically robust silk-like peptide, MaSp2. Purified fusion proteins (four silk domains and four heparin-binding peptide repeats) were expressed in E. coli. Successful fusion of a MaSp2 spider silk peptide with the heparin-binding motif was shown using a variety of analytical assays. The ability of the fusion peptide to bind heparin was assessed with ELISA and was further tested for its anticoagulant property using aPTT assay. Its intrinsic property to inhibit bacterial growth was evaluated using zone of inhibition and crystal violet (CV) assays. Using this strategy, we were able to link the two types of genetic motifs to create a designer silk-like protein with improved hemocompatibility and antimicrobial properties.

10.
Biofouling ; 37(3): 309-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33761816

ABSTRACT

In this work, surface-modifying amphiphilic additives (SMAAs) were synthesized via hydrosilylation using various polymethylhydrosiloxanes (PMHS) and allyl-terminated polyethylene glycol monomethyl ethers (APEG) of varying molecular weights. The additives synthesized were incorporated into a hydrophobic, self-stratifying siloxane-polyurethane (SiPU) coating system to produce an amphiphilic surface. Contact angle experiments and atomic force microscopy (AFM), in a dry and hydrated state, were performed to assess changes in surface wettability and morphology. The antifouling and fouling-release (AF/FR) performances were evaluated by performing laboratory biological assays using the marine bacterium Cellulophaga lytica, the microalga Navicula incerta, the macroalga Ulva linza, the barnacle Amphibalanus amphitrite, and the marine mussel, Geukensia demissa. Several of the formulations showed improved AF/FR performance vs the base SiPU and performed better than some of the commercial standard marine coatings. Formulations containing SMAAs with a low grafting density of relatively high molecular weight PEG chains showed the best performance overall.


Subject(s)
Biofouling , Flavobacteriaceae , Ulva , Biofouling/prevention & control , Polyurethanes , Siloxanes , Surface Properties
11.
Biofouling ; 37(2): 131-144, 2021 02.
Article in English | MEDLINE | ID: mdl-33730945

ABSTRACT

Amphiphilic gels consisting of acrylamide (AAM)/2-hydroxyethyl methacrylate (HEMA), hexafluorobutyl methacrylate (HFBMA) and non-isocyanate urethane dimethacrylate (NIUDMA) of varying molecular weights were compared. A three-level Taguchi analysis was performed using the amount of AAM/HEMA, HFBMA, NIUDMA and reaction time as dependent variables to determine the optimal formulation of the gels with maximized toughness and elastic modulus. The results were compared with commercial AF/FR Intersleek® coatings (IS 700, IS 900 and IS 1100SR) for their antifouling performance against a marine microalga (Navicula incerta), a marine bacterium (Cellulophaga lytica) and adult barnacles (Amphibalanus amphitrite). The toughness, elastic modulus and strain at break of the optimized AAM gels ranged from 3 to7 MPa, 25 to 72 MPa and 80% to 170%, respectively, whereas those of the optimized HEMA gels ranged from 1 to 3 MPa, 13 to 23 MPa and 76% to 160%, respectively. The gels, particularly AHN(E9) and HHN(E12), showed reductions of attachment compared with IS700 of up to 93% and 58%, respectively.


Subject(s)
Biofouling , Animals , Biofouling/prevention & control , Flavobacteriaceae , Gels , Isocyanates , Surface Properties
12.
Langmuir ; 37(8): 2728-2739, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33586437

ABSTRACT

Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphiphilic compound is synthesized and added at increasing amounts to a PU system, where the amount of the additive is the only variable in the study. The additive-modified surfaces are characterized by a variety of techniques including ATR-FTIR, XPS, contact angle measurements, and AFM. Surface characterizations indicate the presence of amphiphilic domains on the surface due to the introduction of the self-stratifying amphiphilic additive. The fouling-release properties of the surfaces are assessed with three biological assays using Ulva linza, Cellulophaga lytica, and Navicula Incerta as the test organisms. A change in the fouling-release performance is observed and plateaued once a certain amount of amphiphilicity is attained in the coating system, which we call the critical amphiphilic concentration (CAC).


Subject(s)
Biofouling , Flavobacteriaceae , Ulva , Biofouling/prevention & control , Surface Properties
13.
Biofouling ; 37(1): 36-48, 2021 01.
Article in English | MEDLINE | ID: mdl-33487051

ABSTRACT

This study is focused on the development of tougher gels using combinations of acrylamide, fluoromethacrylate and a non-isocyanate urethane dimethacrylate (NIUDMA) crosslinker. The NIUDMA was tailored with 2, 3-epoxypropoxy propyl-polydimethylsiloxane segments E9 (MW = 0.36 kg mol-1), E11 (MW = 0.5-0.6 kg mol-1) and E12 (MW = 1-1.4 kg mol-1). A 3 level Taguchi design was used to evaluate the role of each component of the ternary copolymer gel on the elastic modulus and toughness. The toughness ranged from 2.5-7 MJ m-3 whereas the modulus ranged from 27-70 MPa. The formulations with the highest toughness and modulus were screened for their antifouling potential in biological assays against the microalga Navicula incerta and the bacterium Cellulophaga lytica. The E9 gels showed the best performance, achieving a 73% reduction in N. incerta cells and a 92% reduction in C. lytica biofilm remaining after water jetting treatments, when compared with the commercial Intersleek product IS700.


Subject(s)
Acrylamide , Isocyanates , Flavobacteriaceae , Methacrylates , Polyurethanes
14.
Biofouling ; 37(1): 78-95, 2021 01.
Article in English | MEDLINE | ID: mdl-33491472

ABSTRACT

Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.


Subject(s)
Biofouling , Diatoms , Ulva , Acrylates , Animals , Aquatic Organisms , Biofouling/prevention & control , Flavobacteriaceae , Methacrylates/pharmacology , Siloxanes , Surface Properties
15.
Soft Matter ; 15(29): 6014-6026, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31309202

ABSTRACT

Growing demands for bio-friendly antifouling surfaces have stimulated the development of new and ever-improving material paradigms. Despite notable progress in bio-friendly coatings, the biofouling problem remains a critical challenge. In addition to biofouling characteristics, mechanically stressed surfaces such as ship hulls, piping systems, and heat exchangers require long-term durability in marine environments. Here, we introduce a new generation of anti-biofouling coatings with superior characteristics and high mechanical, chemical and environmental durability. In these surfaces, we have implemented the new physics of stress localization to minimize the adhesion of bio-species on the coatings. This polymeric material contains dispersed organogels in a high shear modulus matrix. Interfacial cavitation induced at the interface of bio-species and organogel particles leads to stress localization and detachment of bio-species from these surfaces with minimal shear stress. In a comprehensive study, the performance of these surfaces is assessed for both soft and hard biofouling including Ulva, bacteria, diatoms, barnacles and mussels, and is compared with that of state-of-the-art surfaces. These surfaces show Ulva accumulation of less than 1%, minimal bacterial biofilm growth, diatom attachment of 2%, barnacle adhesion of 0.02 MPa and mussel adhesion of 7.5 N. These surfaces promise a new physics-based route to address the biofouling problem and avoid adverse effects of biofouling on the environment and relevant technologies.


Subject(s)
Biofouling , Stress, Mechanical , Animals , Bacterial Adhesion , Bivalvia/physiology , Diatoms/physiology , Flavobacteriaceae/physiology , Surface Properties , Ulva/physiology
16.
Polymers (Basel) ; 10(6)2018 May 26.
Article in English | MEDLINE | ID: mdl-30966617

ABSTRACT

A new controlled-release platform for hydrophilic compounds has been developed, utilizing citric acid-cured epoxidized sucrose soyate (ESS) as the matrix forming material. By cross-linking epoxy groups of ESS with citric acid in the presence of a hydrophilic model molecule, sodium salt of fluorescein (Sod-FS), we were able to entrap the latter homogenously within the ESS matrix. No chemical change of the entrapped active agent was evident during the fabrication process. Hydrophobicity of the matrix was found to be the rate-limiting factor for sustaining the release of the hydrophilic model compound, while inclusion of release-modifiers such as poly(ethylene glycol) (PEG) within the matrix system modulated the rate and extent of guest release. Using 5 kDa PEG at 5% w/w of the total formulation, it was possible to extend the release of the active ingredient for more than a month. In addition, the amount of modifiers in formulations also influenced the mechanical properties of the matrices, including loss and storage modulus. Mechanism of active release from ESS matrices was also evaluated using established kinetic models. Formulations composed entirely of ESS showed a non-Fickian (anomalous) release behavior while Fickian (Case I) transport was the predominant mechanism of active release from ESS systems containing different amount of PEGs. The mean dissolution time (MDT) of the hydrophilic guest molecule from within the ESS matrix was found to be a function of the molecular weight and the amount of PEG included. At the molecular level, we observed no cellular toxicities associated with ESS up to a concentration level of 10 µM. We envision that such fully bio-based matrices can find applications in compounding point-of-care, extended-release formulations of highly water-soluble active agents.

17.
ACS Appl Bio Mater ; 1(6): 1830-1841, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-34996284

ABSTRACT

A new class of biobased nanocarriers, soysomes, has been discovered and investigated. These nanocarriers are derived from a synthetically accessible, scalable macromolecule, methoxylated sucrose soyate polyol (MSSP), derived from chemical building blocks obtained from soybean oil and sucrose. We observed for the first time that MSSP, when dissolved in an organic solvent of different polarity and slowly added to an aqueous phase at a predetermined rate under "nanoprecipitation" conditions, will form a stable, self-assembled structure with a size range from 100 to 200 nm depending on the polarity difference between the precipitating solvent pairs. Without the aid of poly(ethylene glycol) or any surfactants, these soysomes were found to be stable in water for an extended period and can withstand the destabilizing effect of time, temperature, and pH. We also found that the soysomes were able to encapsulate and release a hydrophobic bioactive compound, such as curcumin. Both MSSP and their self-assembled structures were highly biocompatible and did not trigger cellular toxicity to mammalian cell lines. Our experiments showed that such 100% biobased, noncytotoxic material as MSSP and a related class of products have the potential for use toward the sustainable manufacturing of drug nanocarriers for biomedical applications.

18.
Polym Chem ; 8(34): 5239-5251, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-29104619

ABSTRACT

Silicones with improved water-driven surface hydrophilicity and anti-biofouling behavior were achieved when bulk-modified with poly(ethylene oxide) (PEO) -silane amphiphiles of varying siloxane tether length: α-(EtO)3Si-(CH2)2-oligodimethylsiloxane m -block-poly(ethylene oxide)8-OCH3 (m = 0, 4, 13, 17, 24, and 30). A PEO8-silane [α-(EtO)3Si-(CH2)3-PEO8-OCH3] served as a conventional PEO-silane control. To examine anti-biofouling behavior in the absence versus presence of water-driven surface restructuring, the amphiphiles and control were surface-grafted onto silicon wafers and used to bulk-modify a medical-grade silicone, respectively. While the surface-grafted PEO-control exhibited superior protein resistance, it failed to appreciably restructure to the surface-water interface of bulk-modified silicone and thus led to poor protein resistance. In contrast, the PEO-silane amphiphiles, while less protein-resistant when surface-grafted onto silicon wafers, rapidly and substantially restructured in bulk-modified silicone, exhibiting superior hydrophilicity and protein resistance. A reduction of biofilm for several strains of bacteria and a fungus was observed for silicones modified with PEO-silane amphiphiles. Longer siloxane tethers maintained surface restructuring and protein resistance while displaying the added benefit of increased transparency.

19.
Biofouling ; 33(3): 252-267, 2017 03.
Article in English | MEDLINE | ID: mdl-28270054

ABSTRACT

There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.


Subject(s)
Biofilms/drug effects , Biofouling/prevention & control , Diatoms/physiology , Dimethylpolysiloxanes/pharmacology , Surface-Active Agents/pharmacology , Ulva/physiology , Acrylates/chemistry , Acrylic Resins/chemistry , Biofilms/growth & development , Dimethylpolysiloxanes/chemistry , Molecular Weight , Surface Properties , Surface-Active Agents/chemistry
20.
Green Mater ; 5(1): 4-13, 2017 Mar.
Article in English | MEDLINE | ID: mdl-31673356

ABSTRACT

Surface modifying additives (SMAs), which may be readily blended into silicones to improve anti-fouling behavior, must have excellent surface migration potential and must not leach into the aqueous environment. In this work, we evaluated the efficacy of a series of poly(ethylene oxide) (PEO)-based SMA amphiphiles which varied in terms of crosslinkability, siloxane tether length (m) and diblock versus triblock architectures. Specifically, crosslinkable, diblock PEO-silane amphiphiles with two oligodimethylsiloxane (ODMS) tether lengths [(EtO)3Si-(CH2)3-ODMS m -PEO8, m = 13 and 30] were compared to analogous non-crosslinkable, diblock (H-Si-ODMS m -PEO8) and triblock (PEO8-ODMS m -PEO8) SMAs. Prior to water conditioning, while all modified silicone coatings exhibited a high degree of water-driven surface restructuring, that prepared with the non-crosslinkable diblock SMA (m = 13) was the most hydrophilic. After conditioning, all modified silicone coatings were similarly hydrophilic and remained highly protein resistant, with the exception of PEO8-ODMS 30 -PEO8. Notably, despite twice the PEO content, triblock SMAs were not superior to diblock SMAs. For diblock SMAs, it was shown that water uptake and leaching were also similar whether or not the SMA was crosslinkable.

SELECTION OF CITATIONS
SEARCH DETAIL
...