Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Neuropharmacology ; 258: 110062, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972371

ABSTRACT

BACKGROUND: and Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) constitutes a significant health problem due to the increasing prevalence and lack of therapies for treatment and prevention. While pivotal for routine cancer treatment, paclitaxel and vincristine frequently cause CIPN and impact the quality of life among cancer patients and survivors. Here, we investigate molecular mechanisms and drug transport in CIPN. EXPERIMENTAL APPROACH: Human sensory neurons were derived from induced pluripotent stem cells (iPSC-SNs), which were characterized using flow cytometry and immunolabeling. These iPSC-SNs were exposed to different concentrations of the two microtubule-targeting agents, paclitaxel and vincristine, with and without pre-exposure to inhibitors and inducers of efflux transporters. Neuronal networks were quantified via fluorescent staining against sensory neuron markers. Transcriptional effects of the chemotherapeutics were examined using quantitative polymerase chain reactions (qPCR). KEY RESULTS: Paclitaxel exposure resulted in axonal retraction and thickening, while vincristine caused fragmentation and abolishment of axons. Both agents increased the mRNA expression of the pain receptor, transient receptor potential vanilloid (TRPV1), and highly induced neuronal damage, as measured by activating transcription factor 3 (ATF3) mRNA. iPSC-SNs express the efflux transporters, P-glycoprotein (P-gp, encoded by ABCB1) and multidrug resistance-associated protein 1 (MPR1, encoded by ABCC1). Modulation of efflux transporters indicate that P-gp and MRP1 play a role in modulating neuronal accumulation and neurotoxicity in preliminary experiments. CONCLUSION: and Implications: iPSC-SNs are a valuable and robust model to study the role of efflux transporters and other mechanistic targets in CIPN. Efflux transporters may play a role in CIPN pathogenesis as they regulate the disposition of chemotherapy to the peripheral nervous system, and they may present potential therapeutic targets for CIPN.

2.
Peptides ; 172: 171137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142816

ABSTRACT

Angiotensin AT2-receptor (AT2R) agonists have shown a wide range of protective effects in many preclinical disease models. However, the availability of AT2R-agonists is very limited due to the lack of high-throughput assays for AT2R-agonist identification. Therefore, we aimed to design and validate an assay for high-throughput screening of AT2R-agonist candidates. The assay is based on nitric oxide (NO) release measurements in primary human aortic endothelial cells (HAEC), in AT2R-transfected CHO cells (AT2R-CHO) or in non-transfected CHO cells (Flp-CHO) using the fluorescent probe DAF-FM diacetate. It is run in 96-well plates and fluorescence signals are semi-automatically quantified. The assay was tested for sensitivity (recognition of true positive results), selectivity (recognition of true negative results), and reliability (by calculating the repeatability coefficient (RC)). The high-throughput, semi-automated method was proven suitable, as the NO-releasing agents C21, CGP42112A, angiotensin-(1-7) and acetylcholine significantly increased NO release from HAEC. The assay is sensitive and selective, since the established AT2R-agonists C21, CGP42112A and angiotensin II significantly increased NO release from AT2R-CHO cells, while the non-AT2R-agonists angiotensin-(1-7) and acetylcholine had no effect. Assay reliability was shown by high-throughput screening of a library comprised of 40 potential AT2R-agonists, of which 39 met our requirements for reliability (RC ≤ 20% different from RC for C21). Our newly developed high-throughput method for detection of AT2R-agonistic activity was proven to be sensitive, selective, and reliable. This method is suitable for the screening of potential AT2R-agonists in future drug development programs.


Subject(s)
Acetylcholine , Imidazoles , Nitric Oxide , Sulfonamides , Thiophenes , Animals , Cricetinae , Humans , Cricetulus , Endothelial Cells , High-Throughput Screening Assays , Reproducibility of Results , Receptor, Angiotensin, Type 2 , Angiotensin II/pharmacology
3.
Drug Metab Dispos ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050097

ABSTRACT

Drug-drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems namely HepatoPac, spheroids, and Liver-on-a-chip to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1 and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation towards the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. Significance Statement At present, there are no guidelines for drug-drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.

4.
Eur J Clin Pharmacol ; 79(12): 1687-1698, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831074

ABSTRACT

BACKGROUND: Inflammation suppresses cytochrome P450 (CYP) enzyme activity, and single-dose interleukin 6 receptor antagonists (anti-IL-6R) reverse this effect. Here, we assess the impact of continuous anti-IL-6R therapy in patients with rheumatoid arthritis. METHODS: In a clinical pharmacokinetic trial, the Basel cocktail was administered before and after 3 and 12 weeks of anti-IL-6R therapy to assess CYP enzyme activity (registered in the ClinicalTrials.gov database (identifier NCT04842981) on April 13th, 2021). In a retrospective study, the 4ß-hydroxycholesterol/cholesterol ratio was measured as a biomarker for CYP3A4 activity before and after 3 and 6 months of anti-IL-6R therapy. The control group was patients initiating a tumor necrosis factor alfa (TNF-α) inhibitor. RESULTS: In the clinical pharmacokinetic trial (n = 3), midazolam metabolic ratio (CYP3A4) was inconclusive due to the limited sample size. Midazolam AUC and Cmax indicate a weak impact on CYP3A4 activity after 3 weeks of anti-IL-6R therapy compared to baseline (AUC geometric mean ratio (GMR): 0.80, 95% CI: 0.64-0.99 and Cmax GMR: 0.58, 95% CI: 0.37-0.91), which returns to baseline levels after 12 weeks of therapy (AUC GMR 1.02, 95% CI: 0.72-1.46 and Cmax GMR 1.03, 95% CI 0.72-1.47). No effect on the 4ß-hydroxycholesterol/cholesterol ratio was observed in the retrospective study. CONCLUSION: Based on sparse data from three patients, continuous anti-IL-6R therapy seems to cause an acute but transient increase in CYP3A4 activity in rheumatoid arthritis patients, which may be due to a normalization of the inflammation-suppressed CYP activity. Further studies are warranted to understand the mechanism behind this putative transient effect. Trial registration Registered in the ClinicalTrials.gov database (identifier NCT04842981) on April 13th, 2021.


Subject(s)
Arthritis, Rheumatoid , Cytochrome P-450 CYP3A , Humans , Cytochrome P-450 CYP3A/metabolism , Midazolam/pharmacokinetics , Retrospective Studies , Arthritis, Rheumatoid/drug therapy , Cholesterol , Inflammation , Tumor Necrosis Factor-alpha , Receptors, Interleukin-6
5.
Clin Pharmacol Ther ; 114(2): 434-445, 2023 08.
Article in English | MEDLINE | ID: mdl-37235733

ABSTRACT

Flucloxacillin is a widely used antibiotic. It is an agonist to the nuclear receptor PXR that regulates the expression of cytochrome P450 (CYP) enzymes. Treatment with flucloxacillin reduces warfarin efficacy and plasma concentrations of tacrolimus, voriconazole, and repaglinide. We conducted a translational study to investigate if flucloxacillin induces CYP enzymes. We also investigated if flucloxacillin induces its own metabolism as an autoinducer. We performed a randomized, unblinded, two-period, cross-over, clinical pharmacokinetic cocktail study. Twelve healthy adults completed the study. They ingested 1 g flucloxacillin 3 times daily for 31 days, and we assessed the full pharmacokinetics of the Basel cocktail drugs on days 0, 10, and 28, and plasma concentrations of flucloxacillin on days 0, 9, and 27. The 3D spheroid of primary human hepatocytes (PHHs) were exposed to flucloxacillin (concentration range: 0.15-250 µM) for 96 hours. Induction of mRNA expression, protein abundance, and enzyme activity of CYP enzymes were assessed. Flucloxacillin treatment reduced the metabolic ratio of midazolam (CYP3A4), (geometric mean ratio (GMR) 10 days (95% confidence interval (CI)): 0.75 (0.64-0.89)) and (GMR 28 days (95% CI): 0.72 (0.62-0.85)). Plasma concentrations of flucloxacillin did not change during 27 days of treatment. Flucloxacillin caused concentration-dependent induction of CYP3A4 and CYP2B6 (mRNA, protein, and activity), CYP2C9 (mRNA and protein), CYP2C19 (mRNA and activity), and CYP2D6 (activity) in 3D spheroid PHH. In conclusion, flucloxacillin is a weak inducer of CYP3A4, which may lead to clinically relevant drug-drug interactions for some narrow therapeutic range drugs that are substrates of CYP3A4.


Subject(s)
Cytochrome P-450 CYP3A , Floxacillin , Humans , Adult , Cytochrome P-450 CYP3A/genetics , Floxacillin/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Hepatocytes/metabolism , RNA, Messenger
6.
Br J Clin Pharmacol ; 89(8): 2614-2624, 2023 08.
Article in English | MEDLINE | ID: mdl-37021780

ABSTRACT

AIMS: Dicloxacillin is used to treat staphylococcal infections and we have previously shown that dicloxacillin is an inducer of cytochrome P450 enzymes (CYPs). Here, we employed a translational approach to investigate the effect of a treatment with dicloxacillin on warfarin efficacy in Danish registries. Furthermore, we assessed dicloxacillin as an inducer of CYPs in vitro. METHODS: We conducted a register-based study and analysed international normalized ratio (INR) levels in chronic warfarin users before and after short- and long-term use of dicloxacillin (n = 1023) and flucloxacillin (n = 123). Induction of CYPs were investigated in a novel liver model of 3D spheroid primary human hepatocytes at the level of mRNA, and protein and enzyme activity. RESULTS: Short- and long-term dicloxacillin treatments decreased INR levels by -0.65 (95% confidence interval [CI]: -0.57 to -0.74) and -0.76 (95% CI: -0.50 to -1.02), respectively. More than 90% of individuals experienced subtherapeutic INR levels (below 2) after long-term dicloxacillin treatment. Flucloxacillin decreased INR levels by -0.37 (95% CI: -0.14 to -0.60). In 3D spheroid primary human hepatocytes, the maximal induction of CYP3A4 mRNA, protein and enzyme activity by dicloxacillin were 4.9-, 2.9- and 2.4-fold, respectively. Dicloxacillin also induced CYP2C9 mRNA by 1.7-fold. CONCLUSION: Dicloxacillin induces CYPs and reduces the clinical efficacy of warfarin in patients. This effect is substantially exacerbated during long-term treatment with dicloxacillin. The in vitro results corroborated this drug-drug interaction and correlated to the clinical findings. Caution is warranted for warfarin patients that initiate dicloxacillin or flucloxacillin, especially for a long-term treatment of endocarditis.


Subject(s)
Dicloxacillin , Warfarin , Humans , Warfarin/adverse effects , Dicloxacillin/pharmacology , Anticoagulants/adverse effects , Floxacillin/pharmacology , International Normalized Ratio , Cytochrome P-450 Enzyme System/genetics , Hepatocytes , Drug Interactions
7.
Clin Transl Sci ; 16(6): 1012-1020, 2023 06.
Article in English | MEDLINE | ID: mdl-36869607

ABSTRACT

Polymorphism of the CYP2D6 gene leads to substantial interindividual variability in CYP2D6 enzyme activity. Despite improvements in prediction of CYP2D6 activity based on genotype information, large interindividual variability within CYP2D6 genotypes remains and ethnicity could be a contributing factor. The aim of this study was to investigate interethnic differences in CYP2D6 activity using clinical datasets of three CYP2D6 substrates: (i) brexpiprazole (N = 476), (ii) tedatioxetine (N = 500), and (iii) vortioxetine (N = 1073). The CYP2D6 activity of all individuals in the dataset was estimated through population pharmacokinetic analyses as previously reported. Individuals were assigned a CYP2D6 phenotype and CYP2D6 genotype group based on their CYP2D6 genotype and interethnic differences were investigated within each group. Among individuals categorized as CYP2D6 normal metabolizers, African Americans had a lower CYP2D6 activity compared to Asians (p < 0.01) and in the tedatioxetine and vortioxetine analyses also compared to Whites (p < 0.01). Among CYP2D6 intermediate metabolizers, interethnic differences were also observed, but the findings were not consistent across the substrates. Asian carriers of CYP2D6 decreased function alleles tended to exhibit higher CYP2D6 activity compared to Whites and African Americans. The observed interethnic differences within the CYP2D6 phenotype and genotype groups appeared to be driven by differences in CYP2D6 allele frequencies across ethnicities rather than interethnic differences in enzyme activity for individuals carrying identical CYP2D6 genotypes.


Subject(s)
Cytochrome P-450 CYP2D6 , Ethnicity , Humans , Cytochrome P-450 CYP2D6/genetics , Ethnicity/genetics , Vortioxetine , Phenotype , Gene Frequency , Genotype , Alleles
8.
Clin Pharmacol Ther ; 113(6): 1284-1294, 2023 06.
Article in English | MEDLINE | ID: mdl-36906857

ABSTRACT

Primary human hepatocytes (PHHs) have been the gold standard in vitro model for the human liver and are crucial to predict hepatic drug-drug interactions. The aim of this work was to assess the utility of 3D spheroid PHHs to study induction of important cytochrome P450 (CYP) enzymes and drug transporters. The 3D spheroid PHHs from three different donors were treated for 4 days with rifampicin, dicloxacillin, flucloxacillin, phenobarbital, carbamazepine, efavirenz, omeprazole, or ß-naphthoflavone. Induction of CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and transporters P-glycoprotein (P-gp)/ABCB1, multidrug resistance-associated protein 2 (MRP2)/ABCC2, ABCG2, organic cation transporter 1 (OCT1)/SLC22A1, SLC22A7, SLCO1B1, and SLCO1B3 were evaluated at mRNA and protein levels. Enzyme activity of CYP3A4, CYP2B6, CYP2C19, and CYP2D6 were also assessed. Induction of CYP3A4 protein and mRNA correlated well for all donors and compounds and had a maximal induction of five- to sixfold for rifampicin, which closely correlates to induction observed in clinical studies. Rifampicin induced the mRNA of CYP2B6 and CYP2C8 by 9- and 12-fold, whereas the protein levels of these CYPs reached 2- and 3-fold induction, respectively. Rifampicin induced CYP2C9 protein by 1.4-fold, whereas the induction of CYP2C9 mRNA was over 2-fold in all donors. Rifampicin induced ABCB1, ABCC2, and ABCG2 by 2-fold. In conclusion, 3D spheroid PHHs is a valid model to investigate mRNA and protein induction of hepatic drug-metabolizing enzymes and transporters, and this model provides a solid basis to study induction of CYPs and transporters, which translates to clinical relevance.


Subject(s)
Cytochrome P-450 CYP3A , Rifampin , Humans , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP2B6/metabolism , Rifampin/pharmacology , Rifampin/metabolism , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Carrier Proteins/metabolism , RNA, Messenger/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism
9.
Br J Clin Pharmacol ; 89(8): 2529-2541, 2023 08.
Article in English | MEDLINE | ID: mdl-36967527

ABSTRACT

AIMS: Drug metabolism might be altered in patients with type 2 diabetes. We aimed to evaluate if initiation of glucose-lowering drugs impacts warfarin efficacy and drug metabolism. METHODS: First, we conducted a register-based self-controlled cohort study on Danish and Scottish warfarin users. Warfarin efficacy (international normalized ratio [INR]) was compared before and after initiation of glucose-lowering drugs. Second, we conducted a clinical pharmacokinetic trial comprising treatment-naïve type 2 diabetes patients. Patients ingested probe drugs for drug-metabolizing enzymes (the Basel Cocktail) before initiating glucose-lowering treatment, and after 3 and 12 weeks of treatment. Drug metabolism, glycaemic control, and inflammation were assessed on each visit. RESULTS: In the Danish and Scottish cohorts (n = 982 and n = 44, respectively), initiating glucose-lowering drugs reduced warfarin efficacy. INR decreased from 2.47 to 2.21 in the Danish cohort (mean difference -0.26; 95% CI -0.35; -0.17) and from 2.33 to 2.13 in the Scottish cohort (-0.21; 95% CI -0.52; 0.11) after initiation of glucose-lowering treatment. This impact on INR was more pronounced among individuals with stronger effects of glucose-lowering treatment. In the clinical pharmacokinetic trial (n = 10), initiating metformin did not affect drug metabolism after 3 weeks (geometric mean ratio of CYP3A metabolic ratio: 1.12 [95% CI: 0.95; 1.32]) or 12 weeks of metformin treatment. Glycaemic control improved during treatment, while inflammation remained low and unchanged during treatment. CONCLUSIONS: In conclusion, initiation of glucose-lowering drugs among chronic warfarin users seems associated with a reduction in INR, particularly among individuals with a large decrease in HbA1c . This effect seems unrelated to CYP enzyme activity and warfarin drug metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Warfarin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Cohort Studies , Glucose , Metformin/therapeutic use , International Normalized Ratio , Anticoagulants/adverse effects
10.
Clin Transl Sci ; 16(6): 937-945, 2023 06.
Article in English | MEDLINE | ID: mdl-36908052

ABSTRACT

Diverse representation in clinical trials is crucial to understand the efficacy and safety of drugs in minority groups. This review aims to (1) describe research participants' sex, racial, and ethnic diversity in clinical drug trials and (2) describe the sex distribution of researchers conducting the research. We reviewed all clinical drug trials published in the journals "Clinical Pharmacology and Therapeutics" and "Clinical and Translational Science" in 2000-2001 and 2020-2021 and analyzed the research participants' and researchers' demographics. We compared the race of the research participants with the concurrent race diversity of the reference population in the countries where the research was conducted. We identified 281 articles with 17,639 research participants. Approximately one-third of the research participants were women in both 2000-2001 and 2020-2021. The representation from racial minorities of Black and Asian people increased from 2000-2001 to 2020-2021, but Asian and Native American people are still under-represented in clinical drug trials today. The proportion of female authors increased, but female authors still made up less than 40% of the total number of authors in 2020-2021. In conclusion, men are still over-represented in clinical pharmacology research, and some races are still vastly under-represented. Furthermore, although the proportion of female authors increased with time, they are still under-represented as first and last authors.


Subject(s)
Clinical Trials as Topic , Ethnicity , Minority Groups , Female , Humans , Male , American Indian or Alaska Native , Asian , Black People , Patient Selection , United States
11.
Cancer Chemother Pharmacol ; 91(2): 157-165, 2023 02.
Article in English | MEDLINE | ID: mdl-36598552

ABSTRACT

PURPOSE: Breast cancer treatment is associated with adverse effects, which may delay return-to-work. Single nucleotide polymorphisms (SNPs) may influence the risk and severity of treatment toxicities, which in turn could delay return-to-work. We examined the association of 26 SNPs with return-to-work in premenopausal women with breast cancer. METHODS: Using Danish registries, we identified premenopausal women diagnosed with non-distant metastatic breast cancer during 2007‒2011, assigned adjuvant combination chemotherapy including cyclophosphamide and docetaxel. We genotyped 26 SNPs in 20 genes (ABCB1, ABCC2, ABCG2, CYP1A1, CYP1B1, CYP3A, CYP3A4, CYP3A5, GSTP1, SLCO1B1, SLCO1B3, ARHGEF10, EPHA4, EPHA5, EPHA6, EPHA8, ERCC1, ERCC2, FGD4 and TRPV1) using TaqMan assays. We computed the cumulative incidence of return-to-work (defined as 4 consecutive weeks of work) up to 10 years after surgery, treating death and retirement as competing events and fitted cause-specific Cox regression models to estimate crude hazard ratios (HRs) and 95% confidence intervals (CIs) of return-to-work. We also examined stable labor market attachment (defined as 12 consecutive weeks of work). RESULTS: We included 1,964 women. No associations were found for 25 SNPs. The cumulative incidence of return-to-work varied by CYP3A5 rs776746 genotype. From 6 months to 10 years after surgery, return-to-work increased from 25 to 94% in wildtypes (n = 1600), from 17 to 94% in heterozygotes (n = 249), and from 7 to 82% in homozygotes (n = 15). The HR showed delayed return-to-work in CYP3A5 rs776746 homozygotes throughout follow-up (0.48, 95% CI 0.26, 0.86), compared with wildtypes. Estimates were similar for stable labor market attachment. CONCLUSION: Overall, the SNPs examined in the study did not influence return-to-work or stable labor market attachment after breast cancer in premenopausal women. Our findings did suggest that the outcomes were delayed in homozygote carriers of CYP3A5 rs776746, though the number of homozygotes was low.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Polymorphism, Single Nucleotide , Cytochrome P-450 CYP3A/genetics , Return to Work , Taxoids/therapeutic use , Genotype , Xeroderma Pigmentosum Group D Protein/genetics , Liver-Specific Organic Anion Transporter 1/genetics , Microfilament Proteins/genetics , Microfilament Proteins/therapeutic use
12.
Clin Pharmacol Ther ; 113(2): 360-369, 2023 02.
Article in English | MEDLINE | ID: mdl-36350097

ABSTRACT

Accurate prediction of CYP2D6 phenotype from genotype information is important to support safe and efficacious pharmacotherapy with CYP2D6 substrates. To facilitate accurate CYP2D6 genotype-phenotype translation, there remains a need to investigate the enzyme activity associated with individual CYP2D6 alleles using large clinical data sets. This study aimed to quantify and compare the in vivo function of different CYP2D6 alleles through population pharmacokinetic (PopPK) modeling of brexpiprazole using data from 13 clinical studies. A PopPK model of brexpiprazole and its two metabolites, DM-3411 and DM-3412, was developed based on plasma concentration samples from 826 individuals. As the minor metabolite, DM-3412, is formed via CYP2D6, the metabolic ratio of DM-3412:brexpiprazole calculated from the PopPK parameter estimates was used as a surrogate measure of CYP2D6 activity. A CYP2D6 genotype-phenotype analysis based on 496 subjects showed that the CYP2D6*2 allele (n = 183) was associated with only 10% enzyme activity relative to the wild-type allele (CYP2D6*1) and a low enzyme activity was consistently observed across genotypes containing CYP2D6*2. Among the decreased function alleles, the following enzyme activities relative to CYP2D6*1 were estimated: 23% for CYP2D6*9 (n = 20), 32% for CYP2D6*10 (n = 62), 64% for CYP2D6*14 (n = 1), 4% for CYP2D6*17 (n = 37), 4% for CYP2D6*29 (n = 13), and 9% for CYP2D6*41 (n = 64). These findings imply that a lower functional value would more accurately reflect the in vivo function of many reduced function CYP2D6 alleles in the metabolism of brexpiprazole. The low enzyme activity observed for CYP2D6*2, which has also been reported by others, suggests that the allele exhibits substrate-specific enzyme activity.


Subject(s)
Cytochrome P-450 CYP2D6 , Dopamine Agonists , Serotonin Agents , Alleles , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Genotype , Phenotype , Humans , Serotonin Agents/pharmacokinetics , Dopamine Agonists/pharmacokinetics
13.
Pain ; 164(7): 1502-1511, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36508173

ABSTRACT

ABSTRACT: Paclitaxel-induced peripheral neuropathy (PIPN) is a barrier to effective cancer treatment and impacts quality of life among patients with cancer. We used a translational approach to assess the utility of neurofilament light chain (NFL) as a biomarker of PIPN in a human cell model and in patients with ovarian cancer. We measured NFL in medium from human induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) exposed to paclitaxel. Serum NFL (sNFL) levels were quantified in 190 patients with ovarian cancer receiving paclitaxel/carboplatin chemotherapy at baseline and after each of the following 2 or 6 cycles. Adverse outcomes related to PIPN were retrospectively obtained, and Cox regression model was performed with different sNFL cut-offs after first cycle. The apparent elimination half-life of sNFL was estimated in patients who discontinued paclitaxel. Paclitaxel neurotoxicity in iPSC-SNs was accompanied by NFL release in a concentration-dependent manner ( P < 0.001, analysis of variance). Serum NFL levels increased substantially in patients during paclitaxel/carboplatin chemotherapy with considerable interindividual variability. Patients with sNFL >150 pg/mL after first cycle had increased risk to discontinue paclitaxel early (unadjusted HR: 2.47 [95% CI 1.16-5.22], adjusted HR: 2.25 [95% CI: 0.88-5.79]). Similar trends were shown for risk of severe PIPN and paclitaxel dose reduction because of PIPN. The median elimination half-life of sNFL was 43 days (IQR 27-82 days). Neurofilament light chain constitutes an objective biomarker of neurotoxicity in iPSC-SNs and in ovarian cancer patients with high sNFL predicting PIPN-related adverse outcomes. If prospectively validated, NFL can be used to study PIPN and may guide clinical decision making and personalize treatment with paclitaxel.


Subject(s)
Induced Pluripotent Stem Cells , Ovarian Neoplasms , Peripheral Nervous System Diseases , Humans , Female , Paclitaxel/adverse effects , Quality of Life , Retrospective Studies , Carboplatin/adverse effects , Intermediate Filaments , Peripheral Nervous System Diseases/chemically induced , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/chemically induced , Sensory Receptor Cells , Neurofilament Proteins , Biomarkers
14.
Basic Clin Pharmacol Toxicol ; 131(5): 311-324, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35972991

ABSTRACT

Safe and effective use of drugs requires an understanding of metabolism and transport. We identified the 100 most prescribed drugs in six countries and conducted a literature search on in vitro data to assess contribution of Phase I and II enzymes and drug transporters to metabolism and transport. Eighty-nine of the 100 drugs undergo drug metabolism or are known substrates for drug transporters. Phase I enzymes are involved in metabolism of 67 drugs, while Phase II enzymes mediate metabolism of 18 drugs. CYP3A4/5 is the most important Phase I enzyme involved in metabolism of 43 drugs followed by CYP2D6 (23 drugs), CYP2C9 (23 drugs), CYP2C19 (22 drugs), CYP1A2 (14 drugs) and CYP2C8 (11 drugs). More than half of the drugs (54 drugs) are known substrates for drug transporters. P-glycoprotein (P-gp) is known to be involved in transport of 30 drugs, while breast cancer resistance protein (BCRP) facilitates transport of 11 drugs. A considerable proportion of drugs are subject to a combination of Phase I metabolism, Phase II metabolism and/or drug transport. We conclude that the majority of the most frequently prescribed drugs depend on drug metabolism or drug transport. Thus, understanding variability of drug metabolism and transport remains a priority.


Subject(s)
Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP3A , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Membrane Transport Proteins/metabolism , Microsomes, Liver , Neoplasm Proteins/metabolism
15.
Cancers (Basel) ; 14(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36010931

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially serious adverse effect of a wide range of chemotherapeutics. The lack of understanding of the molecular mechanisms underlying CIPN limits the efficacy of chemotherapy and development of therapeutics for treatment and prevention of CIPN. Human induced pluripotent stem cells (iPSCs) have become an important tool to generate the cell types associated with CIPN symptoms in cancer patients. We reviewed the literature for iPSC-derived models that assessed neurotoxicity among chemotherapeutics associated with CIPN. Furthermore, we discuss the gaps in our current knowledge and provide guidance for selecting clinically relevant concentrations of chemotherapy for in vitro studies. Studies in iPSC-derived neurons revealed differential sensitivity towards mechanistically diverse chemotherapeutics associated with CIPN. Additionally, the sensitivity to chemotherapy was determined by donor background and whether the neurons had a central or peripheral nervous system identity. We propose to utilize clinically relevant concentrations that reflect the free, unbound fraction of chemotherapeutics in plasma in future studies. In conclusion, iPSC-derived sensory neurons are a valuable model to assess CIPN; however, studies in Schwann cells and motor neurons are warranted. The inclusion of multiple iPSC donors and concentrations of chemotherapy known to be achievable in patients can potentially improve translational success.

16.
Clin Transl Sci ; 15(8): 1856-1866, 2022 08.
Article in English | MEDLINE | ID: mdl-35570335

ABSTRACT

Pharmacokinetics is the cornerstone of understanding drug absorption, distribution, metabolism, and elimination. It is also the key to describing variability in drug response caused by drug-drug interactions (DDIs), pharmacogenetics, impaired kidney and liver function, etc. This tutorial aims to provide a guideline and step-by-step tutorial on essential considerations when designing clinical pharmacokinetic studies and reporting results. This includes a comprehensive guide on how to conduct the statistical analysis and a complete code for the statistical software R. As an example, we created a mock dataset simulating a clinical pharmacokinetic DDI study with 12 subjects who were administered 2 mg oral midazolam with and without an inducer of cytochrome P450 3A. We provide a step-by-step guide to the statistical analysis of this clinical pharmacokinetic study, including sample size/power calculation, descriptive statistics, noncompartmental analyses, and hypothesis testing. The different analyses and parameters are described in detail, and we provide a complete R code ready to use in supplementary files. Finally, we discuss important considerations when designing and reporting clinical pharmacokinetic studies. The scope of this tutorial is not limited to DDI studies, and with minor adjustments, it applies to all types of clinical pharmacokinetic studies. This work was done by early career researchers for early career researchers. We hope this tutorial may help early career researchers when getting started on their own pharmacokinetic studies. We encourage you to use this as an inspiration and starting point and continuously evolve your statistical skills.


Subject(s)
Cytochrome P-450 CYP3A , Models, Biological , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Humans , Midazolam/pharmacokinetics
17.
Breast Cancer Res Treat ; 194(2): 353-363, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35501422

ABSTRACT

PURPOSE: Taxane-based chemotherapy is the primary treatment for premenopausal breast cancer. Although being inconsistent, research suggests that variant alleles alter pharmacokinetics through reduced function of OATP transporters (limiting hepatic uptake), CYP-450 enzymes (hampering drug metabolism), and ABC transporters (decreasing clearance). Reduced function of DNA repair enzymes may hamper effectiveness through dose-limiting toxicities. We investigated whether single-nucleotide polymorphisms (SNPs) were associated with breast cancer recurrence or mortality in premenopausal women diagnosed with breast cancer. METHODS: We conducted a population-based cohort study of premenopausal women diagnosed with non-distant metastatic breast cancer in Denmark during 2007‒2011, when guidelines recommended adjuvant combination chemotherapy (taxanes, anthracyclines, and cyclophosphamide). Using archived formalin-fixed paraffin-embedded primary tumor tissue, we genotyped 26 SNPs using TaqMan assays. Danish health registries provided data on breast cancer recurrence (through September 25, 2017) and death (through December 31, 2019). We fit Cox regression models to calculate crude hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and mortality across genotypes. RESULTS: Among 2,262 women, 249 experienced recurrence (cumulative incidence: 13%) and 259 died (cumulative incidence: 16%) during follow-up (median 7.0 and 10.1 years, respectively). Mortality was increased in variant carriers of GSTP1 rs1138272 (HR: 1.30, 95% CI 0.95-1.78) and CYP3A rs10273424 (HR: 1.33, 95% CI 0.98-1.81). SLCO1B1 rs2306283 (encoding OATP1B1) variant carriers had decreased recurrence (HR: 0.82, 95% CI 0.64-1.07) and mortality (HR: 0.77, 95% CI 0.60-0.98). CONCLUSION: Docetaxel effectiveness was influenced by SNPs in GSTP1, CYP3A, and SLCO1B1 in premenopausal women with non-distant metastatic breast cancer, likely related to altered docetaxel pharmacokinetics. These SNPs may help determine individual benefit from taxane-based chemotherapy.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Bridged-Ring Compounds , Chemotherapy, Adjuvant , Cohort Studies , Cytochrome P-450 CYP3A/therapeutic use , Denmark/epidemiology , Docetaxel/therapeutic use , Liver-Specific Organic Anion Transporter 1 , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Polymorphism, Single Nucleotide , Taxoids/therapeutic use
18.
Clin Pharmacol Ther ; 112(2): 277-290, 2022 08.
Article in English | MEDLINE | ID: mdl-34605009

ABSTRACT

Inflammation is a possible cause of variability in drug response and toxicity due to altered regulation in drug-metabolizing enzymes and transporters (DMETs) in humans. Here, we evaluate the clinical and in vitro evidence on inflammation-mediated modulation of DMETs, and the impact on drug metabolism in humans. Furthermore, we identify and discuss the gaps in our current knowledge. A systematic literature search on PubMed, Embase, and grey literature was performed in the period of February to September 2020. A total of 203 papers was included. In vitro studies in primary human hepatocytes revealed strong evidence that CYP3A4 is strongly downregulated by inflammatory cytokines IL-6 and IL-1ß. CYP1A2, CYP2C9, CYP2C19, and CYP2D6 were downregulated to a lesser extent. In clinical studies, acute and chronic inflammatory diseases were observed to cause downregulation of CYP enzymes in a similar pattern. However, there is no clear correlation between in vitro studies and clinical studies, mainly because most in vitro studies use supraphysiological cytokine doses. Moreover, clinical studies demonstrate considerable variability in terms of methodology and inconsistencies in evaluation of the inflammatory state. In conclusion, we find inflammation and pro-inflammatory cytokines to be important factors in regulation of drug-metabolizing enzymes and transporters. The observed downregulation is clinically relevant, and we emphasize caution when treating patients in an inflammatory state with narrow therapeutic index drugs. Further research is needed to identify the full extent of inflammation-mediated changes in DMETs and to further support personalized medicine.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytokines/metabolism , Humans , Inactivation, Metabolic , Inflammation
20.
Basic Clin Pharmacol Toxicol ; 130(1): 93-102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34599645

ABSTRACT

We investigated the impact of genetic variants in OCT1 (SLC22A1) on morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) pharmacokinetics in adult patients scheduled for major surgery. Blood samples were taken before and 5, 10, 15, 30, 45, 60 and 90 min after a bolus of morphine (0.15 mg/kg). Patients were genotyped for the genetic variants (rs12208357, rs34059508, rs72552763 and rs34130495) in OCT1. Eighty-six patients completed the trial. The mean difference (95% confidence interval) for dose adjusted morphine, M3G and M6G AUC was 0.9 (-0.7-2.4), -5.9 (-11.8 to -0.03) and -1.1 (-2.5-0.4) h/L*10-6 , respectively, in patients with two reduced function alleles compared to patients with no reduced function alleles in OCT1. Accordingly, the (AUCM3G/Dose )/(AUCmorphine/Dose ) and (AUCM6G/Dose )/(AUCmorphine/Dose ) ratio was reduced, -1.8 (-3.2 to -0.4) and -0.4 (-0.7 to -0.03), respectively, when comparing the same groups. OCT1 variants had no influence on the experience of pain, adverse events or the number of PCA doses used. In conclusion, genetic variants in OCT1 had a small and clinically unimportant impact on the exposure of morphine after intravenous administration. Our results do not support pre-emptive genotyping for OCT1 prior to morphine administration in patients scheduled for major surgery.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Morphine/pharmacokinetics , Octamer Transcription Factor-1/genetics , Aged , Analgesics, Opioid/administration & dosage , Area Under Curve , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Morphine/administration & dosage , Morphine Derivatives/pharmacokinetics , Pain, Postoperative/drug therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...