Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Zoo Wildl Med ; 48(4): 979-986, 2017 12.
Article in English | MEDLINE | ID: mdl-29297800

ABSTRACT

The primary sense in odontocetes is hearing and a large portion of the odontocete brain is devoted to the auditory processing of echolocation signals. Hearing deficits in odontocetes potentially compromise the ability to forage, navigate, socialize, and evade predators. This presents a challenge to survival and reproduction in wild odontocetes and can affect the general welfare of odontocetes under human care. Currently, little empirical information on how odontocete behavior is affected by hearing loss exists. This study investigated hearing deficits in several species of stranded dolphins and age-related hearing deficits in dolphins kept under human care through auditory evoked potential (AEP) testing and evaluated whether individual behavior correlated with hearing impairment. Behavioral questionnaires for participating animals were completed by individuals with extensive knowledge of the animals' history and behavior. A chi-square analysis determined whether animals with hearing impairment demonstrated behaviors that differed significantly from those considered normal. All tested individuals under human care over 35 years of age had some degree of hearing loss, as did a large percentage of previously stranded animals. Individuals with hearing loss exhibited a range of behavioral changes, including delays in learning new behaviors, accepting novel enrichment, and habituating to new environments. Some individuals with profound hearing loss also displayed a change in vocalization rate in various situations. Findings within previously stranded animals suggest AEP studies should be conducted in all stranded individuals entering rehabilitation. It is further recommended that dolphins living under human care undergo hearing tests as part of their normal health assessments, with emphasis on aging individuals and animals that exhibit delayed learning, respond poorly to audible cues, or show atypical vocalization behavior.


Subject(s)
Behavior, Animal/physiology , Dolphins/physiology , Evoked Potentials, Auditory/physiology , Hearing Loss/veterinary , Aging , Animals , Hearing Loss/diagnosis , Hearing Loss/physiopathology , Surveys and Questionnaires , Vocalization, Animal
2.
Dis Aquat Organ ; 108(2): 91-102, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553415

ABSTRACT

Contamination of coastal waters can carry pathogens and contaminants that cause diseases in humans and wildlife, and these pathogens can be transported by water to areas where they are not indigenous. Marine mammals may be indicators of potential health effects from such pathogens and toxins. Here we isolated bacterial species of relevance to humans from wild bottlenose dolphins Tursiops truncatus and assayed isolated bacteria for antibiotic resistance. Samples were collected during capture-release dolphin health assessments at multiple coastal and estuarine sites along the US mid-Atlantic coast and the Gulf of Mexico. These samples were transported on ice and evaluated using commercial systems and aerobic culture techniques routinely employed in clinical laboratories. The most common bacteria identified were species belonging to the genus Vibrio, although Escherichia coli, Shewanella putrefaciens, and Pseudomonas fluorescens/putida were also common. Some of the bacterial species identified have been associated with human illness, including a strain of methicillin-resistant Staphylococcus aureus (MRSA) identified in 1 sample. Widespread antibiotic resistance was observed among all sites, although the percentage of resistant isolates varied across sites and across time. These data provide a baseline for future comparisons of the bacteria that colonize bottlenose dolphins in the southeastern USA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bottle-Nosed Dolphin/microbiology , Carrier State , Animals , Bacteria/classification , Drug Resistance, Bacterial , Southeastern United States/epidemiology
3.
Comp Med ; 60(2): 149-53, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20412691

ABSTRACT

Numerous cases of urate nephrolithiasis in managed collections of common bottlenose dolphins (Tursiops truncatus) have been reported, but nephrolithiasis is believed to be uncommon in wild dolphins. Risk factors for urate nephrolithiasis in humans include low urinary pH and hypocitraturia. Urine samples from 94 dolphins were collected during April 2006 through June 2009 from 4 wild populations (n = 62) and 4 managed collections (n = 32). In addition, urine uric acid and pH were tested in a subset of these animals. Our null hypothesis was that wild and managed collection dolphins would have no significant differences in urinary creatinine, citrate, and uric acid concentrations and pH. Among urine samples from all 94 dolphins, the urinary levels (mean +/- SEM) for creatinine, citrate, uric acid, and pH were 139 +/- 7.6 mg/dL, 100 +/- 20 mg citrate/g creatinine, 305 +/- 32 mg uric acid/g creatinine, and 6.2 +/- 0.05, respectively. Of the 4 urinary variables, only citrate concentration varied significantly between the 2 primary study groups; compared with wild dolphins, managed collection dolphins were more likely to have undetectable levels of citrate in the urine (21.0% and 81.3%, respectively). Mean urinary citrate concentrations for managed collection and wild dolphin populations were 2 and 150 mg citrate/g creatinine, respectively. We conclude that some managed collections of dolphins, like humans, may be predisposed to urate nephrolithiasis due to the presence of hypocitraturia. Subsequent investigations can include associations between metabolic syndrome, hypocitraturia, and urate nephrolithiasis in humans and dolphins; and the impact of varying levels of seawater ingestion on citrate excretion.


Subject(s)
Bottle-Nosed Dolphin/urine , Citric Acid/urine , Nephrolithiasis , Uric Acid/urine , Animals , Creatinine/urine , Humans , Hydrogen-Ion Concentration , Nephrolithiasis/urine , Nephrolithiasis/veterinary , Risk Factors , Seawater
4.
Avian Dis ; 47(3): 750-2, 2003.
Article in English | MEDLINE | ID: mdl-14562907

ABSTRACT

Sixteen Chilean flamingos, Phoenicopterus chiles, and 10 red-tailed hawks, Buteo jamacensis, were vaccinated in the pectoral muscle with 0.2 ml of a commercially produced killed West Nile virus vaccine intended for use in horses. Half the birds of each species received a booster vaccination 3 weeks after the first injection. Three weeks after the booster vaccination, none of 13 birds surveyed had detectable antibody to West Nile virus.


Subject(s)
Antibodies, Viral/blood , Bird Diseases/prevention & control , Raptors , Viral Vaccines/immunology , West Nile Fever/veterinary , West Nile virus/immunology , Animals , Antibodies, Viral/biosynthesis , Bird Diseases/immunology , Birds , Female , Immunization, Secondary/veterinary , Male , Neutralization Tests/veterinary , Vaccination/veterinary , West Nile Fever/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...