Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 104(1): 249-256, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37552761

ABSTRACT

BACKGROUND: Salt has been identified as an elicitor that can increase the accumulation of phytochemicals in seedlings during the germination process. However, the salinity level required to maximize the yield of phytochemicals, particularly phenolic compounds, needs further investigation for several plant species. To address this issue, we imposed increasing levels of salinity (NaCl solutions) on the sprouting substrate of Triticum durum (var. Platone) grains, at concentrations of 0, 50, 100, 150, 200, 250, and 300 mM (0_S, 50_S, 100_S, 150_S, 200_S, 250_S, and 300_S, respectively). RESULTS: The highest NaCl doses (250_S and 300_S) significantly impacted germination performance and were excluded from further analysis. The seedlings harvested at 8 days after sowing exhibited different growth stages depending on the salinity level: wheatgrass for 0_S, early wheatgrass for 50_S, intermediate between sprout and wheatgrass for 100_S, sprout for 150_S, and very early sprout for 200_S. Furthermore, salinity induced the concentration of phenolic compounds (PhCs) in the seedlings' tissues (i.e., both roots and shoots) in a salinity-dependent manner. The highest values were observed at 200_S, with an increase of 187% of the total investigated PhCs in comparison with 0_S, averaged over shoots and roots. In particular, in 200_S, the accumulation of phenolic acids was up to fourfold higher in roots, and that of flavonoids was up to twofold higher in shoots. CONCLUSION: Our findings suggest that the use of 200 mM NaCl applied to the sprouting substrate is excessive for producing edible sprouts but may be suitable for phytochemical extraction purposes. © 2023 Society of Chemical Industry.


Subject(s)
Seedlings , Triticum , Triticum/chemistry , Sodium Chloride/analysis , Antioxidants/chemistry , Phenols/chemistry , Phytochemicals/chemistry , Salinity
3.
Plants (Basel) ; 11(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956521

ABSTRACT

This work was aimed at investigating the effects of rate and timing of nitrogen fertilization applied to a maternal wheat crop on phytochemical content and antioxidant activity of edible sprouts and wheatgrass obtained from offspring grains. We hypothesized that imbalance in N nutrition experienced by the mother plants translates into transgenerational responses on seedlings obtained from the offspring seeds. To this purpose, we sprouted grains of two bread wheat cultivars (Bologna and Bora) grown in the field under four N fertilization schedules: constantly well N fed with a total of 300 kg N ha-1; N fed only very early, i.e., one month after sowing, with 60 kg N ha-1; N fed only late, i.e., at initial shoot elongation, with 120 kg N ha-1; and unfertilized control. We measured percent germination, seedling growth, vegetation indices (by reflectance spectroscopy), the phytochemical content (total phenols, phenolic acids, carotenoids, chlorophylls), and the antioxidant activity (by gold nanoparticles photometric assay) of extracts in sprout and wheatgrass obtained from the harvested seeds. Our main finding is that grains obtained from crops subjected to late N deficiency produced wheatgrass with much higher phenolic content (as compared to the other N treatments), and this was observed in both cultivars. Thus, we conclude that late N deficiency is a stressing condition which elicits the production of phenols. This may help counterbalance the loss of income related to lower grain yield in crops subjected to such an imbalance in N nutrition.

4.
Front Plant Sci ; 11: 609155, 2020.
Article in English | MEDLINE | ID: mdl-33584752

ABSTRACT

Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold. On the one hand, quantitative methods, such as metabolomics, provide very sensitive indicators of most of the stressors, with the drawback of a disruptive approach, which prevents follow up and dynamical studies. On the other hand qualitative methods, such as fluorescence, thermography and VIS/NIR reflectance, provide a non-disruptive view of the action of the stressors in plants, even across large fields, with the drawback of a poor accuracy. When looking at the spatial scale, the effect of stress may imply modifications from DNA level (nanometers) up to cell (micrometers), full plant (millimeters to meters), and entire field (kilometers). While quantitative techniques are sensitive to the smallest scales, only qualitative approaches can be used for the larger ones. Emerging technologies from nuclear and medical physics, such as computed tomography, magnetic resonance imaging and positron emission tomography, are expected to bridge the gap of quantitative non-disruptive morphologic and functional measurements at larger scale. In this review we analyze the landscape of the different technologies nowadays available, showing the benefits of each approach in plant stress detection, with a particular focus on the gaps, which will be filled in the nearby future by the emerging nuclear physics approaches to agriculture.

5.
Nutrients ; 11(2)2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30781547

ABSTRACT

In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.


Subject(s)
Edible Grain , Phytochemicals/analysis , Germination , Humans
6.
PLoS One ; 11(6): e0156007, 2016.
Article in English | MEDLINE | ID: mdl-27281174

ABSTRACT

Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in Mediterranean environments.


Subject(s)
Agriculture , Edible Grain/metabolism , Plant Proteins/metabolism , Proteome/analysis , Proteomics/methods , Triticum/metabolism , Electrophoresis, Gel, Two-Dimensional , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
7.
J Sci Food Agric ; 96(8): 2715-22, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26304134

ABSTRACT

BACKGROUND: At harvest time, melon quality is related to internal and external parameters, which are very important for consumer attractiveness and marketable yield. Several agronomic factors can affect the quality of melon fruits and among them mineral availability may play a significant role. Therefore the aim of the work was to investigate the effect of phosphorus fertigation on melon fruit (Cucumis melo L.) qualitative characteristics, such as fruit size and yield, pulp colour and firmness, aroma and taste, as well as the accumulation of bioactive antioxidant compounds, namely phenols and carotenoids, and their antiradical properties. RESULTS: Results allowed us to extrapolate the optimal P doses to be used for melon fertigation, to achieve high yield and fruit quality characteristics. Modelling the optimal P dose allowed us to maximize yield and resulted in around 257 kg P2 O5 ha(-1) , even if the quality indices relating to carotenoid content, texture and colour of the melon flesh were not significantly different between samples fertigated with the two highest levels tested. CONCLUSION: It can be assumed that the level of 200 kg P2 O5 ha(-1) would be a good compromise between optimization of agronomic performance and melon fruit quality. © 2015 Society of Chemical Industry.


Subject(s)
Cucurbitaceae/chemistry , Fruit/chemistry , Phosphorus/metabolism , Food Analysis , Phosphorus/chemistry
8.
J Sci Food Agric ; 95(9): 1795-803, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25131800

ABSTRACT

BACKGROUND: The use of sprouts and young plantlets in human nutrition is increasing because they often contain phytochemicals and other high value nutrients. This is also the case for wheat, although there is no literature for hulled wheat species. Thus we determined total polyphenols, phenolic acids (PAs), fibre and minerals in grains, 5-day-old sprouts and 12-day-old wheatgrass of einkorn (cv. Monlis), emmer (cvs Augeo, Rosso Rubino, Zefiro), spelt (cvs Pietro, Giuseppe), durum wheat (cv. Creso) and soft wheat (cv. Orso). RESULTS: Grains of einkorn and emmer contained twice bound PAs as compared to soft and durum wheat and spelt, with p-coumaric acid accounting for about 50% of total bound PAs. In wheatgrass, differences between species for bound PAs decreased due to a decrease in einkorn and emmer and an increase in soft and durum wheat. In all species, total phenols and free PAs increased passing from grains to sprouts and wheatgrass. Neutral and acid detergent fibre content increased with sprouting only in einkorn and emmer. CONCLUSION: Our evidence suggests that the grains of einkorn and emmer and the sprouts and wheatgrass of all Triticum species might potentially be valuable for the development of functional foods.


Subject(s)
Antioxidants/analysis , Phenols/analysis , Plant Shoots/chemistry , Seedlings/chemistry , Seeds/chemistry , Triticum/chemistry , Whole Grains/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Calcium, Dietary/analysis , Coumaric Acids/analysis , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Dietary Fiber/analysis , Humans , Hydrogen-Ion Concentration , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Iron, Dietary/analysis , Italy , Magnesium/analysis , Nutritive Value , Phenols/chemistry , Phenols/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Polyphenols/analysis , Polyphenols/biosynthesis , Polyphenols/chemistry , Potassium, Dietary/analysis , Propionates , Seedlings/growth & development , Seedlings/metabolism , Seeds/growth & development , Seeds/metabolism , Solubility , Species Specificity , Trace Elements/analysis , Triticum/growth & development , Triticum/metabolism , Whole Grains/growth & development , Whole Grains/metabolism
9.
Front Microbiol ; 5: 644, 2014.
Article in English | MEDLINE | ID: mdl-25540640

ABSTRACT

In the present study, long-term organic and conventional managements were compared at the experimental field of Monsampolo del Tronto (Marche region, Italy) with the aim of investigating soil chemical fertility and microbial community structure. A polyphasic approach, combining soil fertility indicators with microbiological analyses (plate counts, PCR-denaturing gradient gel electrophoresis [DGGE] and phospholipid fatty acid analysis [PLFA]) was applied. Organic matter, N as well as some important macro and micronutrients (K, P, Mg, Mn, Cu, and Zn) for crop growth, were more available under organic management. Bacterial counts were higher in organic management. A significant influence of management system and management x crop interaction was observed for total mesophilic bacteria, nitrogen fixing bacteria and actinobacteria. Interestingly, cultivable fungi were not detected in all analyzed samples. PLFA biomass was higher in the organic and Gram positive bacteria dominated the microbial community in both systems. Even if fungal biomass was higher in organic management, fungal PCR-DGGE fingerprinting revealed that the two systems were very similar in terms of fungal species suggesting that 10 years were not enough to establish a new dynamic equilibrium among ecosystem components. A better knowledge of soil biota and in particular of fungal community structure will be useful for the development of sustainable management strategies.

10.
J Sci Food Agric ; 94(4): 713-20, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-23881467

ABSTRACT

BACKGROUND: Interest is increasing around both the use of plants as functional foods and the agronomic techniques which can increase nutrients and phytochemicals. Nevertheless, little research has focused on the effects of light on accumulation of active compounds in root storage organs. Red beet was treated with RED (red/far red ratio: 1.29; transmitted photosynthetically active radiation: 66.9%) and GREEN (red/far red ratio: 0.43; transmitted photosynthetically active radiation: 25.8%) photo-selective films and changes in nutrients and biomass accumulation were measured. RESULTS: Plants subjected to GREEN treatment had less dry weight accumulation both in storage roots (68%) and leaves (42%); moreover, soluble and structural carbohydrate concentration in roots was increased, as were the K, Mg and Zn concentrations (40.08, 2.95 and 0.023 mg g⁻¹ fresh weight, respectively). Conversely, GREEN lowered total phenolic concentration (0.33 vs. 0.47 mg g⁻¹ fresh weight) and antioxidant activity (0.65 vs. 0.94 µm Trolox equivalents g⁻¹ fresh weight) compared to CONTROL. Total pigment concentration was reduced by 20% and 48% with RED and GREEN treatments, respectively. CONCLUSION: Red beet showed a strong plasticity in its adaptation to light availability. Some macronutrients (fiber, sugars, minerals) can be concentrated in roots by modifying the amount and quality of the light, principally with GREEN photo-selective films.


Subject(s)
Adaptation, Physiological , Beta vulgaris/radiation effects , Cosmic Radiation , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Plant Roots/radiation effects , Sunlight , Antioxidants/metabolism , Beta vulgaris/growth & development , Beta vulgaris/metabolism , Beverages/analysis , Dietary Carbohydrates/metabolism , Dietary Fiber/metabolism , Food Quality , Italy , Magnesium/metabolism , Phenols/metabolism , Pigments, Biological/analysis , Pigments, Biological/biosynthesis , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plastics/chemistry , Plastics/radiation effects , Potassium, Dietary/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...