Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Cancer Res Clin Oncol ; 149(6): 2513-2522, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35764701

ABSTRACT

BACKGROUND: Overexpression of phosphodiesterase type 5 (PDE5) has been detected in many types of malignant tumors. Sildenafil, a potent and selective inhibitor of a cGMP-specific PDE5, has been found to enhance the cytotoxic activity of different chemotherapeutic agents including doxorubicin. The combined therapy of doxorubicin with Sildenafil might reduce the possible side effects of chemotherapy while maintaining synergistic anticancer activity. The present study explored for the first time the effects of Sildenafil, alone and in combination with doxorubicin, on pediatric RMS cells. METHODS: Human RMS cells lines RH30 and RD were used. Western blotting and RT-PCR were performed to analyze PDE5 expression in RMS cells. Cell viability was determined using MTT assay. Cell migration was analyzed via transwell chambers, clonal growth and mitotic cell death were analyzed using the clonogenic assay. FACS analysis was performed to evaluate reactive oxygen species (ROS) and apoptosis. RESULTS: Sildenafil significantly decreased cell viability and migration of RD and RH30 cells. The exposure of RMS cells to doxorubicin resulted in a dose-dependent decrease in their viability. Simultaneous administration of Sildenafil enhanced this effect. The incubation of the RMS cells with Sildenafil in the presence of doxorubicin significantly increased the proportion of apoptotic cells and ROS production compared to the treatment with Sildenafil alone. CONCLUSIONS: The results of our study indicate a link between PDE5 inhibition by Sildenafil and decreased calcium signalling leading to significantly impaired viability, migration, and colony forming of RMS cells. Increased ROS production and apoptosis are mechanisms relevantly contributing to this observation.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Humans , Child , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Reactive Oxygen Species/metabolism , Cell Proliferation , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma/pathology
2.
J Cancer Res Clin Oncol ; 149(7): 3313-3323, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35931788

ABSTRACT

PURPOSE: Natural products are generally regarded as safe and have been shown to mediate anticancer activities against a variety of cell types. Zerumbone is a natural cyclic sesquiterpene derived from the rhizome of Zingiber zerumbet, which has attracted extensive attention in the recent decade for anticancer activities. The present study investigates the in vitro effect of zerumbone on rhabdomyosarcoma cells. METHODS: Two rhabdomyosarcoma cell lines (RD and RH30) were used as the model system. The growth inhibition of zerumbone was measured by MTT-assay, apoptosis via flow cytometry, gene expression by real-time PCR, the migration by transwell assay, and intracellular signaling by Western blotting. RESULTS: Zerumbone shows anticancer effects on RD and RH30 cells in a dose-dependent manner via cell growth inhibition and induction of apoptosis. Exposure of RD and RH30 cells on zerumbone also resulted in a decrease of migration and downregulation of the hedgehog pathway. CONCLUSIONS: Taken together, our study provided the first evidence that zerumbone imparted strong inhibitory and apoptotic effects on pediatric rhabdomyosarcoma cell lines and merit further investigation as a promising candidate for the anticancer therapy.


Subject(s)
Rhabdomyosarcoma , Sesquiterpenes , Child , Humans , Cell Line, Tumor , Hedgehog Proteins , Sesquiterpenes/pharmacology , Rhabdomyosarcoma/drug therapy
3.
Biomedicines ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36009359

ABSTRACT

Biomarkers allowing characterization of pediatric rhabdomyosarcoma (RMS) are lacking. Epitope detection in monocytes (EDIM) is a novel method focused on detection of the biomarkers TKTL1 (transketolase-like protein 1) and Apo10 (epitope of DNaseX) in activated monocytes (CD14+/CD16+) from patient's blood. We investigated the expression of these biomarkers in RMS cell lines, tumor material, and peripheral blood from RMS patients. Expression levels of TKTL1 and DNaseX/Apo10 in RMS cell lines (RH30, RD) and tumor samples were analyzed by RT-PCR and flow cytometry. Blood samples of 29 RMS patients were measured and compared to 27 healthy individuals. The percentages of activated CD14+/CD16+ monocytes harboring TKTL1 and Apo10 were determined. EDIM-TKTL1 and EDIM-Apo10 expression scores were calculated. The relationship between TKTL1 expression and DNA-hypomethylation was evaluated. Both RMS cell lines and tumor samples showed significantly higher expression levels of TKTL1 and DNaseX/Apo10 compared to skeletal muscle cells (SkMC). EDIM-TKTL1 and EDIM-Apo10 scores were positive in 96.5% of patients with RMS. All healthy controls had negative corresponding scores. RMS cell lines show increased expression levels of the biomarkers TKTL1 and DNaseX/Apo10. The sensitivity of the EDIM blood test indicates that this assay might serve as an additional tool in pediatric RMS.

4.
Int J Oncol ; 57(1): 289-300, 2020 07.
Article in English | MEDLINE | ID: mdl-32377699

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. The prognosis of advanced stage RMS remains poor, and metastatic invasion is a major cause of treatment failure. Therefore, there is an urgent need for treatment alternatives focusing on metastatic invasion and drug resistance. The stromal cell­derived factor­1 (SDF­1)/chemokine receptor 4 (CXCR4) axis is a crucial factor for metastatic invasion in RMS. Clinical data has revealed that high CXCR4 expression is associated with a poor outcome and a high metastatic rate in several malignancies, including RMS. Thus, targeting CXCR4 in addition to classical chemotherapy may improve the effectiveness of RMS treatment. In the present study, flow cytometry and reverse transcription­quantitative PCR were used to assess the effects of the combined treatment with a CXCR4 antagonist and chemotherapy on CXCR4 expression in the embryonal RMS (RME) cell line RD and in the alveolar RMS (RMA) cell line RH30. The functional effect of CXCR4 expression on the migratory behavior of RMS cells was analyzed using Transwell assays. Treatment with cytotoxic agents modulated CXCR4 expression in RMS cells in a dose­, drug­ and cell line dependent manner; however, this was not observed in RD cells with vincristine. The expression levels of CXCR4 significantly increased the migratory behavior of RMA and did not affect RME cell migration towards stromal cell­derived factor­1α (SDF­1α). AMD3100 markedly reduced the migration of RH30 cells in the Transwell assays compared with SDF­1α alone, and the cytotoxic agents doxorubicin and vincristine increased this effect. The results of the combined treatment in RMS cells using the CXCR4 antagonist AMD3100 together with cytotoxic drugs demonstrated that this approach may be a promising alternative for the treatment of advanced stage pediatric RMS. The observed effects of circumventing metastatic invasion and drug resistance should be further investigated in vivo.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzylamines/pharmacology , Cyclams/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Rhabdomyosarcoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzylamines/therapeutic use , Cell Line, Tumor , Cell Movement , Chemokine CXCL12/analysis , Chemokine CXCL12/metabolism , Child, Preschool , Cyclams/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Infant , Male , Prospective Studies , Receptors, CXCR4/analysis , Receptors, CXCR4/metabolism , Rhabdomyosarcoma/pathology , Signal Transduction/drug effects , Vincristine/pharmacology , Vincristine/therapeutic use
5.
Cell Physiol Biochem ; 43(3): 1301-1308, 2017.
Article in English | MEDLINE | ID: mdl-28992614

ABSTRACT

BACKGROUND/AIMS: Rhabdomyosarcoma, the most common pediatric soft tissue sarcoma, may show an intrinsic refractoriness to standard chemotherapy in advanced tumor stages, which is associated with poor prognosis. Cellular mechanisms conferring tumor cell survival and therapy resistance in many tumor types include the serum & glucocorticoid inducible kinase (SGK) 1 pathway, a kinase expressed ubiquitously with particularly strong expression in skeletal muscle and some tumor types. The present study explored whether SGK1 is expressed in rhabdomyosarcoma and, if so, whether this kinase impacts on tumor cell survival, proliferation and migration. Multiple in vitro techniques were used to study the role of SGK1 in rhabdomyosarcoma. METHODS: The Gene Chip® Human Genome U133 Plus 2.0 Array were employed to examine SGK1 transcriptional activity in healthy muscle and rhabdomyosarcoma tissue. SGK1 transcript levels were quantified in rhabdomyosarcoma cell lines RD (embryonal subtype) and RH30 (alveolar subtype) by RT-PCR, cell viability was measured using MTT assays. Clonal cell growth was assessed via colony forming assays and migration experiments were performed in a transwell system. RESULTS: SGK1 is expressed in embryonal and alveolar rhabdomyosarcoma tissue samples and in RD and RH30 rhabdomyosarcoma cell lines. Administration of EMD638683 - an inhibitor specific for SGK1 - decreased viability of RD and RH30 cells, enhanced the effects of the cytotoxic drug doxorubicin leading to reduced migration and decreased cell proliferation. CONCLUSIONS: SGK1 is expressed in rhabdomyosarcoma cells where it contributes to survival, therapy resistance, cell proliferation and migration. Thus, SGK1 inhibitors may be considered a therapeutic option for the treatment of therapy-resistant rhabdomyosarcoma.


Subject(s)
Immediate-Early Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Antibiotics, Antineoplastic/toxicity , Benzamides/toxicity , Cell Culture Techniques , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/toxicity , Humans , Hydrazines/toxicity , Immediate-Early Proteins/antagonists & inhibitors , Immediate-Early Proteins/genetics , Muscle, Skeletal/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Real-Time Polymerase Chain Reaction , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Soft Tissue Neoplasms/metabolism , Soft Tissue Neoplasms/pathology
6.
Cell Physiol Biochem ; 42(4): 1366-1376, 2017.
Article in English | MEDLINE | ID: mdl-28704809

ABSTRACT

BACKGROUND/AIMS: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. METHODS: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. RESULTS: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. CONCLUSION: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.


Subject(s)
Cell Movement/drug effects , Epithelial Cells/drug effects , Etiocholanolone/analogs & derivatives , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , ORAI1 Protein/genetics , Sodium Channel Blockers/pharmacology , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Etiocholanolone/pharmacology , Fluorescent Dyes/chemistry , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Fura-2/chemistry , Humans , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/antagonists & inhibitors , ORAI1 Protein/metabolism , Phosphorylation/drug effects , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction , Stromal Interaction Molecule 1/antagonists & inhibitors , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Sulfonamides/pharmacology
7.
Biochem Biophys Res Commun ; 477(1): 129-136, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27291153

ABSTRACT

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, has an intrinsic or early-acquisition of resistance to chemo- and radiation therapy. Molecular determinants pivotal for RMS migration, metastatic invasion, cell proliferation, and survival are incompletely identified. Migration and cell proliferation were shown to correlate with cytosolic Ca(2+) activity ([Ca(2+)]i). Store-operated Ca(2+)-entry (SOCE) that increases intracellular [Ca(2+)] is accomplished by Orai1, a pore-forming ion channel unit, the expression of which is stimulated by the transcription factor NFκB. The present study explored the expression of Orai1 and its regulators STIM1 and NFκB in human rhabdomyosarcoma cell lines and analyzed their impact on cell proliferation and migration. For the study human rhabdomyosarcoma cell lines RD (embryonal) and RH30 (alveolar) were analyzed for Orai1, STIM1, and NFκB transcription by RT-PCR and their corresponding proteins in Western blot. [Ca(2+)]i was detected via Fura-2 fluorescence and SOCE - resulting from [Ca(2+)]i increase following store depletion with extracellular Ca(2+) removal and inhibition of the sarcoendoplasmatic reticular Ca(2+) ATPase - detected with thapsigargin. Cell migration was analyzed in transwell and mitotic cell death with the clonogenic assay. In summary, Orai1, STIM1, and NFκB are expressed in embryonal (RD) and alveolar (RH30) rhabdomyosarcoma. SOCE inhibitor BTP2, Orai1 inhibitor 2-APB, or NFκB inhibitor wogonin virtually abrogated (BTP2, 2-APB) or significantly reduced (wogonin) SOCE. Moreover, SOCE inhibitors 2-APB and BTP2 and wogonin significantly inhibited migration and proliferation of both, RD and RH30 cells. These results suggest that Orai1 signaling is involved in SOCE into rhabdomyosarcoma cells thus contributing to migration, invasion and proliferation.


Subject(s)
Calcium/metabolism , Rhabdomyosarcoma/metabolism , Cell Line, Tumor , Fluorescence , Fura-2 , Humans , Ion Transport , NF-kappa B/metabolism , Neoplasm Proteins/genetics , ORAI1 Protein/genetics , RNA, Messenger/metabolism , Rhabdomyosarcoma/pathology , Stromal Interaction Molecule 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...