Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
ACS Pharmacol Transl Sci ; 6(7): 997-1005, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37470015

ABSTRACT

Mutations in connexin 26 (Cx26) cause hearing disorders of a varying degree. Herein, to identify compounds capable of restoring the function of mutated Cx26, a novel miniaturized microarray-based screening system was developed to perform an optical assay of Cx26 functionality. These molecules were identified through a viability assay using HeLa cells expressing wild-type (WT) Cx26, which exhibited sensitivity toward the HSP90 inhibitor radicicol in the submicromolar concentration range. Open Cx26 hemichannels are assumed to mediate the passage of molecules up to 1000 Da in size. Thus, by releasing radicicol, WT Cx26 active hemichannels in HeLa cells contribute to a higher survival rate and lower cell viability when Cx26 is mutated. HeLa cells expressing Cx26 mutations exhibited reduced viability in the presence of radicicol, such as the mutants F161S or R184P. Next, molecules exhibiting chemical chaperoning activity, suspected of restoring channel function, were assessed regarding whether they induced superior sensitivity toward radicicol and increased HeLa cell viability. Through a viability assay and microarray-based flux assay that uses Lucifer yellow in HeLa cells, compounds 3 and 8 were identified to restore mutant functionality. Furthermore, thermophoresis experiments revealed that only 3 (VRT-534) exhibited dose-responsive binding to recombinant WT Cx26 and mutant Cx26K188N with half maximal effective concentration values of 19 and ∼5 µM, respectively. The findings of this study reveal that repurposing compounds already being used to treat other diseases, such as cystic fibrosis, in combination with functional bioassays and binding tests can help identify novel potential candidates that can be used to treat hearing disorders.

2.
BMC Public Health ; 23(1): 240, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737718

ABSTRACT

BACKGROUND: Since social distancing during the COVID-19-pandemic had a profound impact on professional life, this study investigated the effect of PCR testing on on-site work. METHODS: PCR screening, antibody testing, and questionnaires offered to 4,890 working adults in Lower Saxony were accompanied by data collection on demographics, family status, comorbidities, social situation, health-related behavior, and the number of work-related contacts. Relative risks (RR) with 95 % confidence intervals were estimated for the associations between regular PCR testing and other work and health-related variables, respectively, and working on-site. Analyses were stratified by the suitability of work tasks for mobile office. RESULTS: Between April 2020 and February 2021, 1,643 employees underwent PCR testing. Whether mobile working was possible strongly influenced the work behavior. Persons whose work was suitable for mobile office (mobile workers) had a lower probability of working on-site than persons whose work was not suitable for mobile office (RR = 0.09 (95 % CI: 0.07 - 0.12)). In mobile workers, regular PCR-testing was slightly associated with working on-site (RR = 1.19 (0.66; 2.14)). In those whose working place was unsuitable for mobile office, the corresponding RR was 0.94 (0.80; 1.09). Compared to persons without chronic diseases, chronically ill persons worked less often on-site if their workplace was suitable for mobile office (RR = 0.73 (0.40; 1.33)), but even more often if their workplace was not suitable for mobile office (RR = 1.17 (1.04; 1.33)). CONCLUSION: If work was suitable for mobile office, regular PCR-testing did not have a strong effect on presence at the work site. TRIAL REGISTRATION: An ethics vote of the responsible medical association (Lower Saxony, Germany) retrospectively approved the evaluation of the collected subject data in a pseudonymized form in the context of medical studies (No. Bo/30/2020; Bo/31/2020; Bo/32/2020).


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , Pandemics , Retrospective Studies , Workplace , Polymerase Chain Reaction , COVID-19 Testing
3.
Eng Life Sci ; 23(2): 2200026, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751470

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions' continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios.

4.
J Clin Virol ; 157: 105322, 2022 12.
Article in English | MEDLINE | ID: mdl-36279696

ABSTRACT

BACKGROUND: Detection of seroconversion after SARS-CoV-2-infection or vaccination is relevant to discover subclinical cases and recognize patients with a possible immunity. OBJECTIVES: Test performance, effects of age, time-point of seroconversion and immune status regarding neutralizing antibodies (NAbs) and T-cell-reactivity were investigated. STUDY DESIGN: Two antibody assays (Viramed-Test for S/N-specific IgG, Roche-Test for N-specific IgA, -M, -G) were evaluated with classified samples. In total, 381 subjects aged 6-99 years, who had either recovered from the disease or had been vaccinated, were screened for SARS-CoV-2-specific antibodies. This screening was part of an open observational study with working adults. Additionally, children and adults were analyzed in a longitudinal COVID-19 study in schools. For immunity evaluation, virus neutralization tests and ELISpot tests were performed in a subgroup of subjects. RESULTS: Viramed revealed a slightly lower test performance than Roche, but test quality was equally well in samples from very young or very old donors. The time-point of seroconversion after the respective immunization detected by the two tests was not significantly different. N-specific antibodies, detected with Roche, highly correlated with NAbs in recovered subjects, whereas a positive Viramed-Test result was paralleled by a positive ELISpot result. CONCLUSION: Viramed-Test was not as sensitive as Roche-Test, but highly specific and beneficial to distinguish between recovered and vaccinated status. For both tests correlations with humoral and cellular immunity were found. Of note, the expected early detection of IgA and IgM by the Roche-Test did not prove to be an advantage over IgG testing by Viramed.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , COVID-19/diagnosis , Sensitivity and Specificity , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G , Immunoglobulin A
5.
ACS Omega ; 7(33): 28932-28945, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033668

ABSTRACT

While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.

6.
J Adolesc Health ; 70(3): 378-386, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34972613

ABSTRACT

PURPOSE: The COVID-19 pandemic affects students in a myriad of different ways. Our prospective, longitudinal study in a cohort of students in Hannover, Germany explores behavioral patterns during escalating COVID-19 restrictions. METHODS: In total, 777 students between the age of 9 and 20 were assessed for their activity engagement, travel patterns, and self-assessed compliance with protective recommendations at six time points between June 2020 and June 2021 (3,564 observations) and were monitored for severe acute respiratory syndrome coronavirus 2 infection by nasal swab polymerase chain reaction and serum antibody titers. RESULTS: Activity engagement decreased, but self-assessed compliance with measures such as mask wearing and social distancing was stable during escalating restrictions. Although we found no sex difference during the summer break, when incidence was lowest, females engaged in a higher variety of activities than males for all other time points. Older students engaged in more activities and self-assigned themselves lower compliance values than younger ones. Greater involvement in different activities was seen in households which traveled more frequently. Infection rate in our cohort was low (0.03% acute infections, 1.94% positive seroprevalence). DISCUSSION: Our study supports the view that, overall, students show high compliance with COVID-19 recommendations and restrictions. The identification of subsets, such as female and older students, with higher risk behavioral patterns should be considered when implementing public information campaigns. In light of the low infection rate in our cohort, we conclude that in-person learning can occur safely if extensive protective measures are in place and the incidence in the general population remains moderate.


Subject(s)
COVID-19 , Adolescent , Child , Female , Humans , Longitudinal Studies , Male , Pandemics , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
7.
Cells ; 12(1)2022 12 25.
Article in English | MEDLINE | ID: mdl-36611877

ABSTRACT

Protein microarray screenings identified fungal natural products from the azaphilone family as potent inhibitors of SARS-CoV-2 spike protein binding to host ACE2 receptors. Cohaerin F, as the most potent substance from the cohaerin group, led to more than 50% less binding of ACE2 and SARS-CoV-2 spike protein. A survey for structurally related azaphilones yielded the structure elucidation of six new multiformins E-J (10-15) and the revision of the stereochemistry of the multiformins. Cohaerin and multiformin azaphilones (1-5, 8, 12) were assessed for their activity in a cell-based infection assay. Calu-3 cells expressing human ACE2 receptor showed more than 75% and 50% less infection by SARS-CoV-2 pseudotyped lentivirus particles after treatment with cohaerin C (1) and cohaerin F (4), respectively. Multiformin C (8) and G (12) that nearly abolished the infection of cells. Our data show that multiformin-type azaphilones prevent the binding of SARS-CoV-2 to the cell entry receptor ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
8.
Pharmaceutics ; 13(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809700

ABSTRACT

Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.

9.
Cells ; 10(5)2021 04 23.
Article in English | MEDLINE | ID: mdl-33922813

ABSTRACT

Aging and overweight increase the risk of developing type 2 diabetes mellitus. In this cross-sectional study, we aimed to investigate the potential mediating role of T-EMRA cells and inflammatory markers in the development of a decreased insulin sensitivity. A total of 134 healthy older volunteers were recruited (age 59.2 (SD 5.6) years). T cell subpopulations were analyzed by flow cytometry. Furthermore, body composition, HOMA-IR, plasma tryptophan (Trp) metabolites, as well as cytokines and adipokines were determined. Using subgroup and covariance analyses, the influence of BMI on the parameters was evaluated. Moreover, correlation, multiple regression, and mediation analyses were performed. In the subgroup of participants with obesity, an increased proportion of CD8+EMRA cells and elevated concentrations of plasma kynurenine (KYN) were found compared to the lower-weight subgroups. Linear regression analysis revealed that an elevated HOMA-IR could be predicted by a higher proportion of CD8+EMRA cells and KYN levels. A mediation analysis showed a robust indirect effect of the Waist-to-hip ratio on HOMA-IR mediated by CD8+EMRA cells. Thus, the deleterious effects of abdominal obesity on glucose metabolism might be mediated by CD8+EMRA cells in the elderly. Longitudinal studies should validate this assumption and analyze the suitability of CD8+EMRA cells as early predictors of incipient prediabetes.


Subject(s)
Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Insulin Resistance , Leukocyte Common Antigens/immunology , Obesity, Abdominal/physiopathology , Adipokines/blood , Body Mass Index , Case-Control Studies , Cross-Sectional Studies , Cytokines/blood , Female , Humans , Kynurenine/blood , Male , Middle Aged , Tryptophan/metabolism
10.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925347

ABSTRACT

The development of multifunctional nanoscale systems that can mediate efficient tumor targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The combination of imaging agents into one platform provides dual imaging and allows further surface modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEGNIO/QDs/MIONs/Tf produces an obvious negative-contrast enhancement effect on glioma cells by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence microscopy. This novel platform represents the first niosome-based system which combines magnetic nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.


Subject(s)
Glioma/diagnostic imaging , Liposomes/chemistry , Transferrin/chemistry , Animals , Cell Line, Tumor , Contrast Media , Ferric Compounds/chemistry , Glioma/genetics , Glioma/metabolism , Humans , Liposomes/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Magnetics , Microscopy, Electron, Transmission/methods , Nanoparticles , Polyethylene Glycols , Quantum Dots/chemistry
11.
Sci Rep ; 10(1): 2581, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054903

ABSTRACT

Lung surfactants are used for reducing alveolar surface tension in preterm infants to ease breathing. Phospholipid films with surfactant proteins regulate the activity of alveolar macrophages and reduce inflammation. Aberrant skin wound healing is characterized by persistent inflammation. The aim of the study was to investigate if lung surfactant can promote wound healing. Preclinical wound models, e.g. cell scratch assays and full-thickness excisional wounds in mice, and a randomized, phase I clinical trial in healthy human volunteers using a suction blister model were used to study the effect of the commercially available bovine lung surfactant on skin wound repair. Lung surfactant increased migration of keratinocytes in a concentration-dependent manner with no effect on fibroblasts. Significantly reduced expression levels were found for pro-inflammatory and pro-fibrotic genes in murine wounds. Because of these beneficial effects in preclinical experiments, a clinical phase I study was initiated to monitor safety and tolerability of surfactant when applied topically onto human wounds and normal skin. No adverse effects were observed. Subepidermal wounds healed significantly faster with surfactant compared to control. Our study provides lung surfactant as a strong candidate for innovative treatment of chronic skin wounds and as additive for treatment of burn wounds to reduce inflammation and prevent excessive scarring.


Subject(s)
Inflammation/drug therapy , Pulmonary Surfactant-Associated Proteins/pharmacology , Skin/drug effects , Wound Healing/drug effects , Animals , Blister/drug therapy , Blister/pathology , Cell Proliferation/drug effects , Cicatrix/drug therapy , Cicatrix/pathology , Female , Fibroblasts/drug effects , Humans , Inflammation/pathology , Keratinocytes/drug effects , Mice , Skin/injuries , Skin/pathology , Surface-Active Agents
12.
Adv Biochem Eng Biotechnol ; 170: 107-119, 2020.
Article in English | MEDLINE | ID: mdl-30847536

ABSTRACT

Aptazymes are synthetic molecules composed of an aptamer domain and a catalytic active nucleic acid unit, which may be a ribozyme or a DNAzyme. In these constructs the aptamer domain serves as a molecular switch that can regulate the catalytic activity of the ribozyme or DNAzyme subunit. This regulation is triggered by binding of the aptamers target molecule, which causes significant structural changes in the aptamer and thus in the entire aptazyme. Therefore, aptazymes function similar to allosteric enzymes, whose catalytic activity is regulated by binding of ligands (effectors) to allosteric sites due to alteration of the three-dimensional structure of the active site of the enzyme. In case of aptazymes, the allosteric site is composed of an aptamer. Aptazymes can be designed for different applications and have already been used in analytical assays as well as for the regulation of gene expression.


Subject(s)
Aptamers, Nucleotide , DNA, Catalytic , RNA, Catalytic , Aptamers, Nucleotide/chemistry , Catalysis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Ligands , Protein Binding , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism
13.
Int J Mol Sci ; 20(19)2019 Sep 22.
Article in English | MEDLINE | ID: mdl-31546717

ABSTRACT

Niosomes are non-ionic surfactant-based vesicles with high promise for drug delivery applications. They can be rapidly prepared via microfluidics, allowing their reproducible production without the need of a subsequent size reduction step, by controlled mixing of two miscible phases of an organic (lipids dissolved in alcohol) and an aqueous solution in a microchannel. The control of niosome properties and the implementation of more complex functions, however, thus far are largely unknown for this method. Here we investigate microfluidics-based manufacturing of topotecan (TPT)-loaded polyethylene glycolated niosomes (PEGNIO). The flow rate ratio of the organic and aqueous phases was varied and optimized. Furthermore, the surface of TPT-loaded PEGNIO was modified with a tumor homing and penetrating peptide (tLyp-1). The designed nanoparticular drug delivery system composed of PEGNIO-TPT-tLyp-1 was fabricated for the first time via microfluidics in this study. The physicochemical properties were determined through dynamic light scattering (DLS) and zeta potential analysis. In vitro studies of the obtained formulations were performed on human glioblastoma (U87) cells. The results clearly indicated that tLyp-1-functionalized TPT-loaded niosomes could significantly improve anti-glioma treatment.


Subject(s)
Drug Delivery Systems , Liposomes , Microfluidics , Cell Line, Tumor , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Humans , Liposomes/chemistry , Microfluidics/methods , Particle Size
14.
Sci Rep ; 9(1): 13543, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537823

ABSTRACT

Here, we show that human Connexin 26 (hCx26 or Cx26WT) hemichannel opening rapidly enables the transport of small molecules when triggered by temperature and by compensation of the Ca2+ blockade with EDTA. Point mutations within Cx26 were analysed by a novel optical microarray-based Lucifer Yellow uptake assay or by two electrode voltage clamp (TEVC) on frog oocytes to monitor simultaneous activities of channel proteins. Point mutations L90P, F161S, R184P or K188N influenced the temperature-dependent activity drastically. Since several mutations blocked trafficking, the temperature-dependent activity of the recombinant synthesized and purified wild-type Cx26WT and Cx26K188N hemichannel was tested by liposome flux assay (LFA) and on a microarray-based Lucifer Yellow uptake assay under warm conditions (>30 °C). The data from TEVC measurements and dye flux experiments showed that the mutations gave no or only a weak activity at increased temperature (>30 °C). We conclude that the position K188 in the Cx26WT forms a temperature-sensitive salt bridge with E47 whereas the exchange to K188N destabilizes the network loop- gating filter, which was recently identified as a part of the flexible Ca2+ binding site. We assume that the temperature sensitivity of Cx26 is required to protect cells from uncontrolled release or uptake activities through Cx26 hemichannels.


Subject(s)
Connexin 26/genetics , Connexin 26/physiology , Animals , Calcium/metabolism , Gap Junctions/metabolism , Humans , Ion Channel Gating/genetics , Ion Channel Gating/physiology , Oligonucleotide Array Sequence Analysis/methods , Oocytes/metabolism , Porins/genetics , Porins/metabolism , Protein Transport/physiology , Temperature , Xenopus/genetics
15.
Biores Open Access ; 8(1): 32-44, 2019.
Article in English | MEDLINE | ID: mdl-30944770

ABSTRACT

Human mesenchymal stem cells derived from adipose tissue (AD-hMSCs) represent a promising source for tissue engineering and are already widely used in cell therapeutic clinical trials. Until today, an efficient and sustainable cell labeling system for cell tracking does not exist. We evaluated transient transfection through electroporation for cell labeling and compared it with lentiviral transduction for AD-hMSCs. In addition, we tested whether nonsense DNA or a reporter gene such as enhanced green fluorescent protein (EGFP) is the more suitable label for AD-hMSCs. Using electroporation, the transfection efficiency reached a maximal level of 44.6 ± 1.1% EGFP-positive cells after selective and expansive cultivation of the mixed MSC population, and was 44.5 ± 1.4% after gene transfer with Cyanin3-marked nonsense-label DNA, which remained stable during 2 weeks of nonselective cultivation (37.2 ± 4.7% positive AD-hMSCs). Electroporation with both nonsense DNA and pEGFP-N1 led to a slight growth retardation of 45.2% and 59.1%, respectively. EGFP-transfected or transduced AD-hMSCs showed a limited adipogenic and osteogenic differentiation capacity, whereas it was almost unaffected in cells electroporated with the nonsense-label DNA. The nonsense DNA was detectable through quantitative real-time polymerase chain reaction for at least 5 weeks/10 passages and in differentiated AD-hMSCs. EGFP-labeled cells were trackable for 24 h in vitro and served as testing cells with new materials for dental implants for 7 days. In contrast, lentivirally transduced AD-hMSCs showed an altered natural immune phenotype of the AD-hMSCs with lowered expression of two cell type defining surface markers (CD44 and CD73) and a relevantly decreased cell growth by 71.8% as assessed by the number of colony-forming units. We suggest electroporation with nonsense DNA as an efficient and long-lasting labeling method for AD-hMSCs with the comparably lowest negative impact on the phenotype or the differentiation capacity of the cells, which may, therefore, be suitable for tissue engineering. In contrast, EGFP transfection by electroporation is efficient but may be more suitable for cell tracking within cell therapies without MSC differentiation procedures. Since current protocols of lentiviral gene transduction include the risk of cell biological alterations, electroporation seems advantageous and sustainable enough for hMSC labeling.

16.
Biochemistry ; 57(18): 2601-2605, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29664615

ABSTRACT

The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 µM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Xanthones/pharmacology , Adenosine Triphosphate/chemistry , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Fluorescence , HSP90 Heat-Shock Proteins/chemistry , Hot Temperature , Humans , Protein Binding/drug effects , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthones/chemistry
17.
Methods Mol Biol ; 1771: 131-145, 2018.
Article in English | MEDLINE | ID: mdl-29633210

ABSTRACT

The deposition of living cells on microarray surfaces can be used to create physiologically relevant architecture in vitro. Such living cell microarrays enable the reconstruction of biological processes outside the body in a miniaturized format and have many advantages over traditional cell culture. The present protocol offers an option for the preparation and analysis of living primary and stem cell-based microarrays utilizing the standard microarray equipment (contact-free piezoelectric nanoprinter, microarray scanner), as well as microscopy. To produce living cell microarrays, we applied two kinds of mesenchymal stem cells (MSCs) isolated from umbilical cord and adipose tissue, as well as human umbilical vein endothelial cells (HUVECs) as model cells. We used live imaging microscopy for the online monitoring of cell spots in total size, staining of viable cells with Calcein acetoxymethyl ester (Calcein-AM) and treatment of MSCs with differentiation media to analyze the proliferation, viability, and differentiation potential of printed cells. This way, the general applicability of the established living cell-based microarray production was demonstrated.


Subject(s)
Cell Culture Techniques , Primary Cell Culture/methods , Stem Cells , Tissue Array Analysis/methods , Cell Differentiation , Cell Line , Cell Survival , Humans , Microscopy , Stem Cells/cytology , Stem Cells/metabolism
18.
Chembiochem ; 19(6): 562-574, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29265716

ABSTRACT

Thirteen new reblastatin derivatives, with alkynyl, amino and fluoro substituents on the aromatic ring, were prepared by a chemo-biosynthetic approach using an AHBA(-) mutant strain of Streptomyces hygroscopicus, the geldanamycin producer. The inhibitory potencies of these mutaproducts and of an extended library of natural products and derivatives were probed with purified heat shock proteins (Hsps), obtained from Leishmania braziliensis (LbHsp90) as well as from human sources (HsHsp90). We determined the activities of potential inhibitors by means of a displacement assay in which fluorescence-labelled ATP competes for the ATP binding sites of Hsps in the presence of the inhibitor in question. The results were compared with those of cell-based assays and, in selected cases, of isothermal titration calorimetry (ITC) measurements. In essence, reblastatin derivatives are also able to bind effectively to the ATP-binding site of LbHsp90, and for selected derivatives, moderate differences in binding to LbHsp90 and HsHsp90 were encountered. This work demonstrates that parasitic heat shock proteins can be developed as potential pharmaceutical targets.


Subject(s)
Anti-Bacterial Agents/pharmacology , Heat-Shock Proteins/antagonists & inhibitors , Quinones/pharmacology , Streptomyces/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Heat-Shock Proteins/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinones/chemical synthesis , Quinones/chemistry , Streptomyces/chemistry , Streptomyces/genetics , Structure-Activity Relationship
19.
Bioorg Med Chem ; 25(24): 6345-6352, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29042222

ABSTRACT

A facile method for testing ATP binding in a highly miniaturized microarray environment using human HSP70 and DnaK from Mycobacterium tuberculosis as biological targets is reported. Supported by molecular modelling studies we demonstrate that the position of the fluorescence label on ATP has a strong influence on the binding to human HSP70. Importantly, the label has to be positioned on the adenine ring and not to the terminal phosphate group. Unlabelled ATP displaced bound Cy5-ATP from HSP70 in the micromolar range. The affinity of a well-known HSP70 inhibitor VER155008 for the ATP binding site in HSP70 was determined, with a EC50 in the micromolar range, whereas reblastin, a HSP90-inhibitor, did not compete for ATP in the presence of HSP70. The applicability of the method was demonstrated by screening a small compound library of natural products. This unraveled that terphenyls rickenyl A and D, recently isolated from cultures of the fungus Hypoxylon rickii, are inhibitors of HSP70. They compete with ATP for the chaperone in the range of 29 µM (Rickenyl D) and 49 µM (Rickenyl A). Furthermore, the microarray-based test system enabled protein-protein interaction analysis using full-length HSP70 and HSP90 proteins. The labelled full-length human HSP90 binds with a half-maximal affinity of 5.5 µg/ml (∼40 µM) to HSP70. The data also demonstrate that the microarray test has potency for many applications from inhibitor screening to target-oriented interaction studies.


Subject(s)
HSP70 Heat-Shock Proteins/antagonists & inhibitors , Protein Array Analysis , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Mycobacterium tuberculosis/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
20.
Int J Mol Sci ; 18(7)2017 Jul 02.
Article in English | MEDLINE | ID: mdl-28671589

ABSTRACT

Advanced theranostic nanomedicine is a multifunctional approach which combines the diagnosis and effective therapy of diseased tissues. Here, we investigated the preparation, characterization and in vitro evaluation of theranostic liposomes. As is known, liposome-quantum dot (L-QD) hybrid vesicles are promising nanoconstructs for cell imaging and liposomal-topotecan (L-TPT) enhances the efficiency of TPT by providing protection against systemic clearance and allowing extended time for it to accumulate in tumors. In the present study, hydrophobic CdSe/ZnS QD and TPT were located in the bilayer membrane and inner core of liposomes, respectively. Dynamic light scattering (DLS), zeta potential (ζ) measurements and fluorescence/absorption spectroscopy were performed to determine the vesicle size, charge and spectroscopic properties of the liposomes. Moreover, drug release was studied under neutral and acidic pH conditions. Fluorescence microscopy and flow cytometry analysis were used to examine the cellular uptake and intracellular distribution of the TPT-loaded L-QD formulation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to investigate the in vitro cytotoxicity of the formulations on HeLa cells. According to the results, the TPT-loaded L-QD hybrid has adequate physicochemical properties and is a promising multifunctional delivery vehicle which is capable of a simultaneous co-delivery of therapeutic and diagnostic agents.


Subject(s)
Diagnostic Imaging , Drug Delivery Systems , Liposomes , Nanoparticles , Theranostic Nanomedicine , Animals , Cell Survival , Diagnostic Imaging/methods , Drug Compounding , Drug Liberation , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes/chemical synthesis , Liposomes/chemistry , Nanoparticles/chemistry , Particle Size , Quantum Dots , Theranostic Nanomedicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...