Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 176: 113821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163721

ABSTRACT

The use of lipids from conventional oils and fats to produce solid lipid nanoparticles (SLN) attracting interest from the food industry, since due their varying compositions directly affects crystallization behavior, stability, and particle sizes (PS) of SLN. Thus, this study aimed evaluate the potential of fully hydrogenated oils (hardfats) with different hydrocarbon chain lengths to produce SLN using different emulsifiers. For that, fully hydrogenated palm kern (FHPkO), palm (FHPO), soybean (FHSO), microalgae (FHMO) and crambe (FHCO) oils were used. Span 60 (S60), soybean lecithin (SL), and whey protein isolate (WPI) were used as emulsifiers. The physicochemical characteristics and crystallization properties of SLN were evaluated during 60 days. Results indicates that the crystallization properties were more influenced by the hardfat used. SLN formulated with FHPkO was more unstable than the others, and hardfats FHPO, FHSO, FHMO, and FHCO exhibited the appropriate characteristics for use to produce SLN. Concerning emulsifiers, S60- based SLN showed high instability, despite the hardfat used. SL-based and WPI-based SLN formulations, showed a great stability, with crystallinity properties suitable for food incorporation.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , Oils , Nanoparticles/chemistry , Liposomes , Lecithins , Emulsifying Agents
2.
Inflammopharmacology ; 31(1): 485-498, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586042

ABSTRACT

Nutritional interventions have been shown to be an interesting approach for the treatment of chronic diseases, including inflammatory bowel disease (IBD). Persea americana Mill. (avocado), is a potential food to be used for the prevention or treatment of intestinal inflammation, due to its nutritional value and pharmacological effects. In this study we evaluated if the dietary intervention with avocado fruit pulp could as an intestinal anti-inflammatory diet using a trinitrobenzenesulfonic acid (TNBS) model of intestinal inflammation in rats. For this purpose, 5, 10 or 20% of avocado fruit pulp was incorporated in the diet of rats, for 21 days before and 7 days after TNBS-induced intestinal inflammation. Dietary intervention with avocado fruit pulp (20%) decreased the extension of colonic lesions (1.38 ± 0.99 vs. 2.67 ± 0.76 cm), weight/length colon ratio (151.03 ± 31.45 vs. 197.39 ± 49.48 cm), inhibited myeloperoxidase activity (891.2 ± 243.2 vs 1603 ± 158.2 U/g), reduced tumor necrosis factor-α (53.94 ± 6.45 vs. 114.9 ± 6.21 pg/mg), interleukin-1ß (583.6 ± 106.2 vs. 1259 ± 81.68 pg/mg) and interferon gamma (27.95 ± 2.97 vs. 47.79 ± 3.51 pg/mg) levels and prevented colonic glutathione depletion (2585 ± 77.2 vs 1778 ± 167.2 nmol/g). The consumption of enriched diet with 20% avocado pulp by 28 days did not promote any alterations in the biochemical or behavioral parameters evaluated. Avocado showed intestinal anti-inflammatory activity, modulating immune response, and acting as antioxidant. The dietary intervention with avocado was safe, suggesting its potential as a complementary treatment in intestinal inflammation.


Subject(s)
Biological Products , Persea , Rats , Animals , Trinitrobenzenesulfonic Acid , Antioxidants/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy
3.
Metabolism ; 112: 154350, 2020 11.
Article in English | MEDLINE | ID: mdl-32910938

ABSTRACT

BACKGROUND: Interesterified fats have largely replaced the partially hydrogenated oils which are the main dietary source of trans fat in industrialized food. This process promotes a random rearrangement of the native fatty acids and the results are different triacylglycerol (TAG) molecules without generating trans isomers. The role of interesterified fats in metabolism remains unclear. We evaluated metabolic parameters, glucose homeostasis and inflammatory markers in mice fed with normocaloric and normolipidic diets or hypercaloric and high-fat diet enriched with interesterified palm oil. METHODS: Male Swiss mice were randomly divided into four experimental groups and submitted to either normolipidic palm oil diet (PO), normolipidic interesterified palm oil diet (IPO), palm oil high-fat diet (POHF) or interesterified palm oil high-fat diet (IPOHF) during an 8 weeks period. RESULTS: When compared to the PO group, IPO group presented higher body mass, hyperglycemia, impaired glucose tolerance, evidence of insulin resistance and greater production of glucose in basal state during pyruvate in situ assay. We also observed higher protein content of hepatic PEPCK and increased cytokine mRNA expression in the IPO group when compared to PO. Interestingly, IPO group showed similar parameters to POHF and IPOHF groups. CONCLUSION: The results indicate that substitution of palm oil for interesterified palm oil even on normocaloric and normolipidic diet could negatively modulate metabolic parameters and glucose homeostasis as well as cytokine gene expression in the liver and white adipose tissue. This data support concerns about the effects of interesterified fats on health and could promote further discussions about the safety of the utilization of this unnatural fat by food industry.


Subject(s)
Diet, High-Fat , Fatty Acids/metabolism , Homeostasis/drug effects , Liver/drug effects , Palm Oil/administration & dosage , Animals , Cytokines/metabolism , Insulin Resistance/physiology , Liver/metabolism , Mice
4.
J Nutr Biochem ; 59: 153-159, 2018 09.
Article in English | MEDLINE | ID: mdl-30005920

ABSTRACT

Interesterified fats have largely replaced hydrogenated vegetable fat, which is rich in trans fatty acids, in the food industry as an economically viable alternative, generating interest to study their health effects. The aim of this study was to evaluate the effect that interesterification of oils and fat has on lipid-induced metabolic dysfunction, hepatic inflammation and ER stress. Five week-old male Wistar rats were randomly divided into three experimental groups, submitted to either normocaloric and normolipidic diet containing 10% of lipids from unmodified soybean oil (SO) or from interesterified soybean oil (ISO), and one more group submitted to a high fat diet (HFD) containing 60% of fat from lard as a positive control, for 8 or 16 weeks. Metabolic parameters and hepatic gene expression were evaluated. The HFD consumption led to increased body mass, adiposity and impaired glucose tolerance compared to SO and ISO at both time points of diet. However, the ISO group showed an increased body mass gain, retroperitoneal WAT mass, fasting glucose, and impaired glucose tolerance during ipGTT at 16 weeks compared to SO. Moreover, at 8 weeks, hepatic gene expression of Atf3 and Tnf were increased in the ISO group compared to the SO group. Thus, replacement of natural fat with interesterified fat on a normocaloric and normolipidic diet negatively modulated metabolic parameters and resulted in impaired glucose tolerance in rats.


Subject(s)
Liver/drug effects , Soybean Oil/chemistry , Soybean Oil/pharmacology , Weight Gain/drug effects , Activating Transcription Factor 3/genetics , Adiposity/drug effects , Animals , Biomarkers/metabolism , Diet, High-Fat/adverse effects , Endoplasmic Reticulum Stress/drug effects , Esterification , Fatty Acids/analysis , Fatty Acids/chemistry , Gene Expression Regulation/drug effects , Glucose Intolerance , Hepatitis/etiology , Liver/physiology , Male , Rats, Wistar
5.
Food Res Int ; 107: 61-72, 2018 05.
Article in English | MEDLINE | ID: mdl-29580526

ABSTRACT

Several studies have shown that excessive intake of trans and saturated fatty acids is associated with an increased risk of cardiovascular disease. In this context, the food industry has sought alternatives for the development of healthy lipid bases, with higher levels of unsaturated fatty acids, adapting to current legislation. The incorporation of structuring agents into liquid oils has proven to be a potential alternative for obtaining semi-plastic lipid bases with reduced levels of saturated fatty acids. Thus, the objective of this study was to produce zero trans fat bases with lower saturated fatty acids levels. Palm oil (PO) was used as a zero trans-lipid base reference because of its technological functionality. Blends containing different proportions of high oleic sunflower oil (HOSO) and PO were prepared as follows: control 100: 0; 80:20; 60:40; 40:60; 20:80; and 100: 0 PO: HOSO (w/w%), respectively. Then, 3% of fully hydrogenated crambe oil (FHCO) and 3% sorbitan monostearate (SMS) were added to the blends as structuring agents, forming the structured (S) blends. The addition of HOSO to the PO decreased the saturated fatty acids by up to 30.6%, with consequent increase of unsaturated fatty acids, especially oleic acid. The joint action of the SMS and the FCHO allowed for obtaining structured blends with plastic and spreadability characteristics, as well as modifications throughout the crystallization process of the original blends.


Subject(s)
Crambe Plant , Emulsifying Agents/chemistry , Food Handling/methods , Hexoses/chemistry , Palm Oil/chemistry , Plant Oils/chemistry , Sunflower Oil/chemistry , Calorimetry, Differential Scanning , Crambe Plant/chemistry , Crystallization , Hydrogenation , Molecular Conformation , Oleic Acid/chemistry , Plant Oils/isolation & purification , Temperature
6.
J Food Sci Technol ; 54(11): 3391-3403, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29051634

ABSTRACT

This work sought to obtain and evaluate zero trans-fat reduced in saturated fatty acids, with higher content of unsaturated fatty acids. Palm oil (PO) was used as the reference of zero trans lipid base. Different amounts of linseed oil (LO) were added to PO, obtaining the following blends: 100:0; 80:20; 60:40; 40:60; 20:80 and 0:100 of PO:LO (w/w%), respectively. These blends were added to fully hydrogenated soybean oil (FHSO) as the crystallization modifying agent, and to sorbitan monostearate (SMS) as the structuring element, both at a proportion of 3% to build the structured fractions. The control and the structured blends were evaluated for fatty acid composition, solid fat content, consistency, crystallization kinetics, thermal behavior, microstructure and polymorphism. With the addition of LO to the PO, an increase of up to 80% was observed in the content of alpha-linolenic acid and a reduction of saturated fatty acids to 47% in the blends. FHSO and SMS offered thermal resistance to the blends, with relevant changes in the crystallization kinetics and microstructure, affecting macroscopic characteristics with the increase in consistence. It was possible to obtain a lipid formulation with features of plasticity and enhanced nutritional quality, compatible with several food applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...