Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RMD Open ; 10(2)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599656

ABSTRACT

OBJECTIVE: We sought to examine associations between height gain across childhood and adolescence with hip shape in individuals aged 60-64 years from the Medical Research Council National Survey of Health and Development, a nationally representative British birth cohort. METHODS: Height was measured at ages 2, 4, 6, 7, 11 and 15 years, and self-reported at age 20 years. 10 modes of variation in hip shape (HM1-10), described by statistical shape models, were previously ascertained from DXA images taken at ages 60-64 years. Associations between (1) height at each age; (2) Super-Imposition by Translation And Rotation (SITAR) growth curve variables of height size, tempo and velocity; and (3) height gain during specific periods of childhood and adolescence, and HM1-10 were tested. RESULTS: Faster growth velocity was associated with a wider, flatter femoral head and neck, as described by positive scores for HM6 (regression coefficient 0.014; 95% CI 0.08 to 0.019; p<0.001) and HM7 (regression coefficient 0.07; 95% CI 0.002 to 0.013; p=0.009), and negative scores for HM10 (regression coefficient -0.006; 95% CI -0.011 to 0.00, p=0.04) and HM2 (males only, regression coefficient -0.017; 95% CI -0.026 to -0.09; p<0.001). Similar associations were observed with greater height size and later height tempo. Examination of height gains during specific periods of childhood and adolescence identified those during the adolescence period as being most consistently associated. CONCLUSION: Our analyses suggest that individual growth patterns, particularly in the adolescent period, are associated with modest variations in hip shape at 60-64 years, which are consistent with features seen in osteoarthritis.


Subject(s)
Hip , Life Change Events , Humans , Male , Hip/anatomy & histology , Hip/growth & development , Middle Aged
2.
Bone Joint Res ; 11(3): 162-170, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35272487

ABSTRACT

AIMS: Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2 -/-) display accelerated bone growth. METHODS: We examined vulnerability of Socs2 -/- mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. RESULTS: We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2 -/- in comparison with WT. Histological examination of WT and Socs2 -/- knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2 -/- mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2 -/-, in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. CONCLUSION: Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162-170.

3.
Calcif Tissue Int ; 109(3): 243-256, 2021 09.
Article in English | MEDLINE | ID: mdl-32062692

ABSTRACT

Osteoarthritis (OA) is a progressive and disabling musculoskeletal disease affecting millions of people and resulting in major healthcare costs worldwide. It is the most common form of arthritis, characterised by degradation of the articular cartilage, formation of osteophytes, subchondral sclerosis, synovial inflammation and ultimate loss of joint function. Understanding the pathogenesis of OA and its multifactorial aetiology will lead to the development of effective treatments, which are currently lacking. Two-dimensional (2D) in vitro tissue models of OA allow affordable, high-throughput analysis and stringent control over specific variables. However, they are linear in fashion and are not representative of physiological conditions. Recent in vitro studies have adopted three-dimensional (3D) tissue models of OA, which retain the advantages of 2D models and are able to mimic physiological conditions, thereby allowing investigation of additional variables including interactions between the cells and their surrounding extracellular matrix. Numerous spontaneous and induced animal models are used to reproduce the onset and monitor the progression of OA based on the aetiology under investigation. This therefore allows elucidation of the pathogenesis of OA and will ultimately enable the development of novel and specific therapeutic interventions. This review summarises the current understanding of in vitro and in vivo OA models in the context of disease pathophysiology, classification and relevance, thus providing new insights and directions for OA research.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Disease Models, Animal , Humans
4.
Bonekey Rep ; 5: 818, 2016.
Article in English | MEDLINE | ID: mdl-27408711

ABSTRACT

Ex vivo explant culture models are powerful tools in bone research. They allow investigation of bone and cartilage responses to specific stimuli in a controlled manner that closely mimics the in vivo processes. Because of limitations in obtaining healthy human bone samples the explant growth of animal tissue serves as a platform to study the complex physico-chemical properties of the bone. Moreover, these models enable preserving important cell-cell and cell-matrix interactions in order to better understand the behaviour of cells in their natural three-dimensional environment. Thus, the use of bone ex vivo explant cultures can frequently be of more physiological relevance than the use of two-dimensional primary cells grown in vitro. Here, we describe isolation and ex vivo growth of different animal bone explant models including metatarsals, femoral heads, calvaria, mandibular slices and trabecular cores. We also describe how these explants are utilised to study bone development, cartilage and bone metabolism, cancer-induced bone diseases, stem cell-driven bone repair and mechanoadaptation. These techniques can be directly used to understand mechanisms linked with bone physiology or bone-associated diseases.

5.
J Bone Miner Metab ; 32(3): 240-51, 2014 May.
Article in English | MEDLINE | ID: mdl-23925391

ABSTRACT

Bone mineralization is a carefully orchestrated process, regulated by a number of promoters and inhibitors that function to ensure effective hydroxyapatite formation. Here we sought to identify new regulators of this process through a time series microarray analysis of mineralising primary osteoblast cultures over a 27 day culture period. To our knowledge this is the first microarray study investigating murine calvarial osteoblasts cultured under conditions that permit both physiological extracellular matrix mineralization through the formation of discrete nodules and the terminal differentiation of osteoblasts into osteocytes. RT-qPCR was used to validate and expand the microarray findings. We demonstrate the significant up-regulation of >6,000 genes during the osteoblast mineralization process, the highest-ranked differentially expressed genes of which were those dominated by members of the PPAR-γ signalling pathway, namely Adipoq, Cd36 and Fabp4. Furthermore, we show that the inhibition of this signalling pathway promotes matrix mineralisation in these primary osteoblast cultures. We also identify Cilp, Phex, Trb3, Sox11, and Psat1 as novel regulators of matrix mineralization. Further studies examining the precise function of the identified genes and their interactions will advance our understanding of the mechanisms underpinning biomineralization.


Subject(s)
Calcification, Physiologic/physiology , Osteoblasts/physiology , Animals , Calcification, Physiologic/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Durapatite/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteocytes/metabolism , Osteocytes/physiology , PPAR gamma/genetics , PPAR gamma/metabolism , Signal Transduction , Skull/metabolism , Skull/physiology , Transcription, Genetic , Up-Regulation
6.
Cell Biochem Funct ; 30(8): 633-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22714865

ABSTRACT

The Wnt signaling pathway plays a crucial role in the development and homeostasis of a variety of adult tissues and, as such, is emerging as an important therapeutic target for numerous diseases. Factors involved in the Wnt pathway are expressed throughout limb development and chondrogenesis and have been shown to be critical in joint homeostasis and endochondral ossification. Therefore, in this review, we discuss Wnt regulation of chondrogenic differentiation, hypertrophy and cartilage function. Moreover, we detail the role of the Wnt signaling pathway in cartilage degeneration and its potential to act as a target for therapy in osteoarthritis.


Subject(s)
Cartilage Diseases/metabolism , Cartilage/metabolism , Osteoarthritis/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Cartilage/growth & development , Humans , Models, Biological , Wnt3A Protein/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...