Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; 162: 105691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733894

ABSTRACT

The article presents a systematic literature review on the use and the psychiatric implications of over-the-counter drugs (OTC), prescription-only-medications (POM), and new psychoactive substances (NPS) within custodial settings. The searches wer carried out on 2 November 2022 on PubMed, Scopus, and Web of Science in line with PRISMA guidelines. A total of 538 records were identified, of which 37 met the inclusion criteria. Findings showed the most prevalent NPS and OTC and POM classes reported in prisons were synthetic cannabinoids receptor agonists (SCRAs) and opioids, respectively. NPS markets were shown to be in constant evolution following the pace of legislations aimed to reduce their spread. The use of such substances heavily impacts the conditions and rehabilitation of persons in custody, with consequent physical and mental health risks. It is important to raise awareness of the use and misuse of such substances in prisons (i) from an early warning perspective for law enforcement and policy makers (ii) to prompt doctors to cautiously prescribe substances that may be misused (iii) to improve and increase access to treatment provided (iv) to add such substances to routine toxicological screening procedures (v) to improve harm reduction programmes.


Subject(s)
Nonprescription Drugs , Psychotropic Drugs , Substance-Related Disorders , Humans , Substance-Related Disorders/epidemiology , Prisons , Prescription Drugs , Prisoners
2.
Pharmacy (Basel) ; 12(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38251407

ABSTRACT

INTRODUCTION: The designer benzodiazepine (DBZD) market continues to expand whilst evading regulatory controls. The widespread adoption of social media by pro-drug use communities encourages positive discussions around DBZD use/misuse, driving demand. This research addresses the evolution of three popular DBZDs, etizolam (E), flubromazepam (F), and pyrazolam (P), available on the drug market for over a decade, comparing the quantitative chemical analyses of tablet samples, purchased from the internet prior to the implementation of the Psychoactive Substances Act UK 2016, with the thematic netnographic analyses of social media content. METHOD: Drug samples were purchased from the internet in early 2016. The characterisation of all drug batches were performed using UHPLC-MS and supported with 1H NMR. In addition, netnographic studies across the platforms X (formerly Twitter) and Reddit, between 2016-2023, were conducted. The latter was supported by both manual and artificial intelligence (AI)-driven thematic analyses, using numerous.ai and ChatGPT, of social media threads and discussions. RESULTS: UHPLC-MS confirmed the expected drug in every sample, showing remarkable inter/intra batch variability across all batches (E = 13.8 ± 0.6 to 24.7 ± 0.9 mg; F = 4.0 ± 0.2 to 23.5 ± 0.8 mg; P = 5.2 ± 0.2 to 11.5 ± 0.4 mg). 1H NMR could not confirm etizolam as a lone compound in any etizolam batch. Thematic analyses showed etizolam dominated social media discussions (59% of all posts), with 24.2% of posts involving sale/purchase and 17.8% detailing new administration trends/poly-drug use scenarios. Artificial intelligence confirmed three of the top five trends identified manually. CONCLUSIONS: Purity variability identified across all tested samples emphasises the increased potential health risks associated with DBZD consumption. We propose the global DBZD market is exacerbated by surface web social media discussions, recorded across X and Reddit. Despite the appearance of newer analogues, these three DBZDs remain prevalent and popularised. Reporting themes on harm/effects and new developments in poly-drug use trends, demand for DBZDs continues to grow, despite their potent nature and potential risk to life. It is proposed that greater controls and constant live monitoring of social media user content is warranted to drive active regulation strategies and targeted, effective, harm reduction strategies.

3.
Sci Rep ; 12(1): 16657, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198676

ABSTRACT

Interest in nanoparticle modification using functional chemicals has increased rapidly, as it allows more freedom of physiochemical tuning of the nanoparticle's surface into biomedically oriented and designated properties. However, the observation and detection of the thin molecular layers on the nanoparticle surface are very challenging under current analytical facilities. The focus of this research is to demonstrate fundamental interactions between the surface treated nanoparticles and their host liquid media using lab-based experimentation and simulation. In this research, investigation has been carried out on analyzing the surface compatibility and the diffusivity of modified CuO nanoparticles (CuONPs) with short-chain carboxylate-terminated molecules in biofluids. Moreover, during the current Covid-19 pandemic, the Cu/CuONPs have proved effective in killing SARS-CoV1/2 and other airborne viruses. This research was conducted at the molecular level with joint consideration of experimental and simulation studies for characterization of variables. Experimental tests conducted using Fourier Transform Infrared (FTIR) spectroscopy demonstrated several spectral ranges of interest, specifically, detection of three major carboxylate attachments (i.e., 1667-1609 cm-1, 1668-1557 cm-1, etc.) were found. From simulation, similar attachment styles were observed by the LAMMPS simulation package that mimicked similar agglomerations with a predicted diffusion coefficient as recorded to be 2.28E-9 m2/s. Viscosities of modified nanofluids were also compared with unmodified nanofluids for defining aggregation kinetics.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Copper/chemistry , Humans , Pandemics , Spectroscopy, Fourier Transform Infrared
4.
Drug Test Anal ; 14(8): 1350-1367, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35355411

ABSTRACT

This paper presents a systematic literature review on the detection of new psychoactive substances (NPS) in prison settings. It includes the most frequently reported NPS classes, the routes and forms used for smuggling, and the methods employed to analyse biological and non-biological samples. The search was carried out using MEDLINE (EBSCO), Scopus (ELSEVIER), PubMed (NCBI), and Web of Science (Clarivate) databases, along with reports from the grey literature in line with the PRISMA-S guidelines. A total of 2708 records were identified, of which 50 met the inclusion criteria. Findings showed the most prevalent NPS class reported in prison was synthetic cannabinoids (SCs). The most frequently reported SCs in non-biological samples were 4F-MDMB-BINACA, MDMB-4en-PINACA, and 5F-ADB. These were smuggled mainly through the postal services deposited on paper or herbal matrices. Concentrations of SCs detected on seized paper ranged between 0.05 and 1.17 mg/cm2 . The SCs most frequently reported in biological specimens (i.e., urine, blood, saliva, and wastewater) were 5F-MDMB-PICA, 4F-MDMB-BINACA, and MDMB-4en-PINACA. Concentrations of SCs reported in femoral blood and serum were 0.12-0.48 ng/ml and 34-17 ng/ml, respectively. Hyphenated techniques were predominantly employed and generally successful for the detection of NPS in biological (i.e., LC-HRMS/MS) and non-biological samples (i.e., LC-HRMS/MS and GC-MS). The onsite technique IMS showed promise for detecting SCs in various forms; however, immunoassays were not recommended. Future work should focus on accurate in-field detection of SCs deposited on paper and in urine and saliva to improve real-time decision-making, as well as wastewater and air monitoring for overall drug use trends.


Subject(s)
Illicit Drugs , Cannabinoids , Chromatography, Liquid/methods , Illicit Drugs/urine , Prisons , Wastewater
5.
J Pharm Pharmacol ; 71(1): 38-45, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28560741

ABSTRACT

OBJECTIVES: A method was developed to analyze St John's wort (Hypericum perforatum L.) herb and preparations using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the quantity of 11 elements (Al, B, Ba, Ca, Cu, Fe, Mg, Mn, Ni, Sr and Zn). METHODS: This study includes the evaluation of digestion acids and calibration methods, as well as instrumental parameters such as choice of nebulizer and emission wavelength. KEY FINDINGS: Two nebulizers (Conikal and SeaSpray) performed similarly for most elements, and two optimum wavelengths were determined for each element. Five acids were evaluated for the digestion of the Polish Certified Reference Material Tea Leaves (INCT-TL-1), while three were taken forward to use for the different St John's wort formulations (i.e. herb, capsule and tablet). A simple protocol using 5 ml HNO3 was sufficient in most cases; however, variability was observed for elements often bound in silicates (e.g. Al, Fe and Zn). An external weighted calibration was also found to be preferential over unweighted, and the use of standard addition affected some concentration values up to 20%. CONCLUSIONS: Therefore, this paper presents the development and optimized method parameters to be used with ICP-OES that will allow the analysis of 11 key elements present in St John's wort herb and preparations.


Subject(s)
Hypericum/chemistry , Plant Preparations/analysis , Spectrum Analysis/methods , Calibration , Capsules , Equipment Design , Microwaves , Nebulizers and Vaporizers , Plant Preparations/chemistry , Spectrum Analysis/instrumentation , Tablets
6.
RSC Adv ; 8(56): 31924-31933, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-35547469

ABSTRACT

A novel approach for the identification of New Psychoactive Substances (NPS) by means of Raman spectroscopy coupled with Principal Components Analysis (PCA) employing the largest dataset of NPS reference materials to date is reported here. Fifty three NPS were selected as a structurally diverse subset from an original dataset of 478 NPS compounds. The Raman spectral profiles were experimentally acquired for all 53 substances, evaluated using a number of pre-processing techniques, and used to generate a PCA model. The optimum model system used a relatively narrow spectral range (1300-1750 cm-1) and accounted for 37% of the variance in the dataset using the first three principal components, despite the large structural diversity inherent in the NPS subset. Nonetheless, structurally similar NPS (i.e., the synthetic cannabinoids FDU-PB-22 & NM-2201) grouped together in the PCA model based on their Raman spectral profiles, while NPS with different chemical scaffolds (i.e., the benzodiazepine flubromazolam and the cathinone α-PBT) were well delineated, occupying markedly different areas of the three-dimensional scores plot. Classification of NPS based on their Raman spectra (i.e., chemical scaffolds) using the PCA model was further investigated. NPS that were present in the initial dataset of 478 NPS but were not part of the selected 53 training set (validation set) were observed to be closely aligned to structurally similar NPS within the generated model system in all cases. Furthermore, NPS that were not present in the original dataset of 478 NPS (test set) were also shown to group as expected in the model (i.e., methamphetamine and N-ethylamphetamine). This indicates that, for the first time, a model system can be applied to potential 'unknown' psychoactive substances, which are new to the market and absent from existing chemical libraries, to identify key structural features to make a preliminary classification. Consequently, it is anticipated that this study will be of interest to the broad scientific audience working with large structurally diverse chemical datasets and particularly to law enforcement agencies and associated scientific analytical bodies worldwide investigating the development of novel identification methodologies for psychoactive substances.

7.
Forensic Sci Int ; 273: 113-123, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28260646

ABSTRACT

The chemical identification of new psychoactive substances (NPS) in the field is challenging due not only to the plethora of substances available, but also as a result of the chemical complexity of products and the chemical similarity of NPS analogues. In this study, handheld Raman spectroscopy and the use of two excitation wavelengths, 785 and 1064nm, were evaluated for the identification of 60 NPS products. The products contained a range of NPS from classes including the aminoindanes, arylalkylamines, benzodiazepines, and piperidines & pyrrolidines. Identification was initially assessed using the instruments' in built algorithm (i.e., % HQI) and then further by visual inspection of the Raman spectra. Confirmatory analysis was preformed using gas chromatography mass spectrometry. For the 60 diverse products, an NPS was successfully identified via the algorithm in 11 products (18%) using the 785nm source and 29 products (48%) using the 1064nm source. Evaluation of the Raman spectra showed that increasing the excitation wavelength from 785 to 1064nm improved this 'first pass' identification primarily due to a significant reduction in fluorescence, which increased S/N of the characteristic peaks of the substance identified. True positive correlations between internet products and NPS signatures ranged from 57.0 to 91.3% HQI with typical RSDs<10%. Tablet formulations and branded products were particularly challenging as a result of low NPS concentration and high chemical complexity, respectively. This study demonstrates the advantage of using a 1064nm source with handheld Raman spectroscopy for improved 'first pass' NPS identification when minimal spectral processing is required, such as when working in field. Future investigations will focus on the use of mixture algorithms, effect of NPS concentration, and further improvement of spectral libraries.

8.
Chem Commun (Camb) ; 52(47): 7474-7, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27198990

ABSTRACT

An anthracene molecular probe has been synthesised and shown to target mephedrone, a stimulant drug from the cathinone class of new psychoactive substances (NPS). A protocol has been developed to detect mephedrone via the probe using NMR spectroscopy in a simulated street sample containing two of the most common cutting agents, benzocaine and caffeine.

9.
J Pharm Biomed Anal ; 125: 15-21, 2016 Jun 05.
Article in English | MEDLINE | ID: mdl-26994552

ABSTRACT

St. John's wort (SJW) (Hypericum perforatum) is a herbal remedy commonly used to treat mild depression. The elemental profiles of 54 samples (i.e., dry herbs, tablets and capsules) were evaluated by monitoring 25 elements using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The major elemental constituents in the SJW samples were Ca (300-199,000µg/g), Mg (410-3,530µg/g), Al (4.4-900µg/g), Fe (1.154-760µg/g), Mn (2.4-261µg/g), Sr (0.88-83.6µg/g), and Zn (7-64µg/g). For the sixteen elements that could be reliably quantified, principal component analysis (PCA) was used to investigate underlying patterns in the data. PCA models identified 7 key elements (i.e., Ba, Ca, Cd, Mg, Mo, Ni and Y), which described 85% of the variance in the dataset in the first three principal components. The PCA approach resulted in a general delineation between the three different formulations and provides a basis for monitoring product quality in this manner.


Subject(s)
Hypericum/chemistry , Spectrum Analysis/methods , Trace Elements/analysis , Limit of Detection , Principal Component Analysis
10.
Neuropharmacology ; 105: 630-638, 2016 06.
Article in English | MEDLINE | ID: mdl-26686391

ABSTRACT

In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 µM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.


Subject(s)
Adamantane/analogs & derivatives , Cannabinoid Receptor Agonists/pharmacology , Dopamine Agents/pharmacology , Indazoles/pharmacology , Indoles/pharmacology , Quinolines/pharmacology , Adamantane/pharmacology , Animals , Cannabinoid Receptor Antagonists/pharmacology , Central Nervous System Stimulants/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Male , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Naphthalenes/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
11.
Hum Psychopharmacol ; 27(2): 106-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22389075

ABSTRACT

OBJECTIVES: The fully synthetic 'legal high' 5,6-methylenedioxy-2-aminoindane (MDAI) is an analogue of 3,4-methylenedioxymethamphetamine. Although developed in the 1990s, it was not widely abused until 2010. However, mephedrone was banned in the UK in April 2010, and almost immediately, MDAI was widely advertised as a legal alternative. This paper provides both an overview of the current state of knowledge of MDAI and a critical analysis of online available information relating to its psychoactive effects, adverse reactions and use in combination with other drugs. METHODS: The literature on MDAI was searched in three databases: PsycInfo, PubMed and MedScape. Once the availability of information on MDAI was identified within these websites, further specific searches were carried out for narratives focusing on the nature of its effects on users, motivations behind its recreational use and possible trends of misuse, and any other relevant information. RESULTS: Internet-sourced products have been shown variously to contain mephedrone, and mixed compositions of inorganic substances, while containing no MDAI. Numbers of Internet searches have been considerably higher in the UK compared with Germany and the US. CONCLUSIONS: Better international collaboration levels may be needed to tackle the novel and fast growing phenomenon of novel psychoactive drug availability from the web.


Subject(s)
Hallucinogens/pharmacology , Indans/pharmacology , Internet , Animals , Designer Drugs/adverse effects , Designer Drugs/pharmacology , Drug and Narcotic Control , Hallucinogens/adverse effects , Humans , Indans/administration & dosage , Indans/adverse effects , Methamphetamine/adverse effects , Methamphetamine/analogs & derivatives , Methamphetamine/pharmacology , Substance-Related Disorders/epidemiology , United Kingdom
12.
Biosens Bioelectron ; 24(7): 2113-8, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19109007

ABSTRACT

The concept of generic and tunable sensor materials for the detection of proteases based on the thin film degradation of peptide cross-linked dextran hydrogels was explored. Hydrogel cross-links were formed via simple imine linkages between aldehyde groups in oxidized dextran and a peptide sequence susceptible to protease cleavage. Degradation of the hydrogel films was monitored in this study using a quartz crystal microbalance (QCM). The sensor material was developed using the protease/peptide pair of human neutrophil elastase (HNE) and Ala-Ala-Pro-Val-Ala-Ala-Lys (AAPVAAK). A direct relationship between the hydrogel degradation rate and protease activity was observed; HNE activities from 2.5 to 30Uml(-1) were detected using 25% cross-linked films. Film degradation was rapid and was complete in less than 10min for HNE activities >/=10Uml(-1). An increase in the rate of degradation by a factor of 3.5 was achieved by increasing the cross-linking density from 25% to 75%. QCM admittance data fitted with a BVD equivalent circuit showed increases in film viscoelasticity upon enzyme addition. A second protease/peptide pair of cathepsin G and Ala-Ala-Pro-Phe-Phe-Lys (AAPFFK) was tested where 25% AAPFFK cross-linked hydrogels demonstrated a rapid response at 100mUml(-1). Swapping the protease/peptide pairs to HNE/AAPFFK and cathepsin G/AAPVAAK showed low levels of cross-sensitivity further demonstrating the specificity of film degradation.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Hydrogels/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Peptide Hydrolases/analysis , Peptide Hydrolases/chemistry , Peptides/chemistry , Cross-Linking Reagents/chemistry , Dextrans/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Membranes, Artificial , Reproducibility of Results , Sensitivity and Specificity
13.
Anal Chem ; 79(5): 1999-2006, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17249637

ABSTRACT

The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.


Subject(s)
Metals/chemistry , Peptides/chemistry , Amides/chemistry , Microscopy , Protein Conformation , Sequence Analysis, Protein , Spectrum Analysis, Raman
14.
J Comb Chem ; 8(6): 929-34, 2006.
Article in English | MEDLINE | ID: mdl-17096583

ABSTRACT

An electrothermal vaporizer inductively coupled plasma mass spectrometer (ETV-ICPMS) was used to quantitatively screen metals bound to single polystyrene (TentaGel) beads with immobilized oligopeptides. Tests were performed using ETV-ICPMS to screen a series of identical beads as well as a series of combinatorial library beads exposed to a multimetal solution composed of Mg2+, Mn2+, Ni2+, Cu2+, Cd2+, Eu2+, and Pb2+. The residual metal content remaining bound to the beads after acid extractions was also analyzed by solid sampling of the entire bead using oxygen ashing in the ETV. Nine beads (80 mesh, 0.25 mmol g(-1) nominal capacity) containing covalently attached polyaspartic acid (PLAsp; n = 20) showed metal extract concentrations in the range of 4-130 ng mL(-1). After normalizing by bead volume, the precision of capacity measurements in a single bead (7-14%) was primarily dictated by analysis error and contributions from bead diameter measurement with negligible contributions, surprisingly, from variations in site density from bead to bead. A sample combinatorial library of the sequence GXXGXXGXXGXX (X = cysteine, aspartic acid, or glutamic acid and G = glycine) (60 mesh, 0.25 mmol g(-1) nominal capacity) was also used to demonstrate the utility of this method. Metal extract concentrations ranged from 1 to 1300 ng mL(-1) with significant concentration variation between beads, indicating the individual selectivity on each bead. For these larger beads, analysis precision (i.e., capacity precision) was further improved to 3-10% due to the overall increase in bead metal content. Through metal extract determinations, ETV-ICPMS was shown to be a viable nondestructive tool for full metal characterization of "hit" sequences belonging to a combinatorial library.


Subject(s)
Combinatorial Chemistry Techniques/methods , Mass Spectrometry/methods , Metals/chemistry , Oligopeptides/chemistry , Polystyrenes/chemistry , Binding Sites , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...