Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Colloid Interface Sci ; 534: 88-94, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30216836

ABSTRACT

HYPOTHESIS: CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock's CO2-wettability is lacking. EXPERIMENTS: We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid concentration thresholds above which storage efficiency may get influenced significantly. FINDINGS: These thresholds (defined for structural trapping as a water contact angle θ > 90°; and for capillary trapping when primary drainage is unaffected, i.e. θ > 50°) were very low for structural trapping (∼10-3-10-7 M organic acid concentration Corganic) and extremely low for capillary trapping (10-7 M to below 10-10 M Corganic). Since minute organic acid concentrations are always present in deep saline aquifers and certainly in depleted hydrocarbon reservoirs, significantly lower storage capacities and containment security than previously thought can be predicted in carbonate reservoirs, and reservoir-scale models and evaluation schemes need to account for these effects to de-risk CGS projects.

3.
Talanta ; 130: 527-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25159442

ABSTRACT

Perfluorocarbon (PFC) compounds have been used as chemical tracer molecules to understand the movement of supercritical carbon dioxide for geosequestration monitoring and verification purposes. A commonly used method for detecting PFCs involves the collection of a sample from either soil-gas or the atmosphere via carbon-based sorbents which are then analyzed in a laboratory. However, PFC analysis in aquatic environments is neglected and this is an issue that needs to be considered since the PFC is likely to undergo permeation through the overlying water formations. This paper presents for the first time an innovative analytical method for the trace level in situ detection of PFCs in water. It reports on the development of a sensor based on mid-infrared attenuated total reflection (MIR-ATR) spectroscopy for determining the concentration of perfluoromethylcyclohexane (PMCH) and perfluoro-1,3-dimethylcyclohexane (PDCH) in aquatic systems. The sensor comprises a zinc selenide waveguide with the surface modified by a thin polymer film. The sensitivity of this device was investigated as a function of polymer type, coating thickness, and solution flow rates. The limit of detection (LOD) was determined to be 23 ppb and 79 ppb for PMCH and PDCH, respectively when using a 5 µm thick polyisobutylene (PIB) coated waveguide. This study has shown that the MIR-ATR sensor can be used to directly quantify PFC-based chemical tracer compounds in water over the 20-400 ppb concentration range.


Subject(s)
Carbon Sequestration , Fluorocarbons/analysis , Spectroscopy, Fourier Transform Infrared/methods , Water Pollutants, Chemical/analysis , Water/chemistry , Biosensing Techniques , Polymers/chemistry , Selenium Compounds/chemistry , Zinc Compounds/chemistry
4.
Proc Natl Acad Sci U S A ; 109(2): E35-41, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22184225

ABSTRACT

Carbon capture and storage (CCS) is vital to reduce CO(2) emissions to the atmosphere, potentially providing 20% of the needed reductions in global emissions. Research and demonstration projects are important to increase scientific understanding of CCS, and making processes and results widely available helps to reduce public concerns, which may otherwise block this technology. The Otway Project has provided verification of the underlying science of CO(2) storage in a depleted gas field, and shows that the support of all stakeholders can be earned and retained. Quantitative verification of long-term storage has been demonstrated. A direct measurement of storage efficiency has been made, confirming that CO(2) storage in depleted gas fields can be safe and effective, and that these structures could store globally significant amounts of CO(2).


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Carbon Dioxide/analysis , Carbon Sequestration , Climate Change , Oil and Gas Fields , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL
...