Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 14(6): 824-37, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24704494

ABSTRACT

Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.


Subject(s)
Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Stem Cell Niche , Aged , Animals , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
SELECTION OF CITATIONS
SEARCH DETAIL
...