Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mech Dev ; 122(12): 1300-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16274963

ABSTRACT

The early transcriptional hierarchy that subdivides the vertebrate hindbrain into seven to eight segments, the rhombomeres (r1-r8), is largely unknown. The Kreisler (MafB, Krml1, Val) gene is earliest gene expressed in an r5/r6-restricted manner and is essential for r5 and r6 development. We have identified the S5 regulatory element that directs early Kreisler expression in the future r5/r6 domain in 0-10 somite stage embryos. variant Hepatocyte Nuclear Factor 1 (vHNF1/HNF1beta/LF-3B) is transiently expressed in the r5/r6 domain of 0-10 somite stage embryos and a vHNF1binding site within this element is essential but not sufficient for r5/r6-specific expression. Thus, early inductive events that initiate Kreisler expression are clearly distinct from later-acting ones that modulate its expression levels. This site and some of the surrounding sequences are evolutionarily conserved in the genomic DNA upstream of the Kreisler gene among species as divergent as mouse, humans, and chickens. This provides the first evidence of a direct requirement for vHNF1 in initiation of Kreisler expression, suggests that the role of vHNF1 is evolutionarily conserved, and indicates that vHNF1 collaborates with other transcription factors, which independently bind to the S5 regulatory region, to establish the r5/r6 domain.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Hepatocyte Nuclear Factor 1/physiology , Homeodomain Proteins/physiology , MafB Transcription Factor/biosynthesis , MafB Transcription Factor/genetics , Rhombencephalon/embryology , Animals , Base Sequence , Binding Sites/genetics , Cell Differentiation/genetics , Conserved Sequence , Enhancer Elements, Genetic , Genetic Variation , Hepatocyte Nuclear Factor 1/biosynthesis , Hepatocyte Nuclear Factor 1/genetics , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Rhombencephalon/cytology , Rhombencephalon/metabolism
2.
Dev Biol ; 252(2): 287-300, 2002 Dec 15.
Article in English | MEDLINE | ID: mdl-12482716

ABSTRACT

The complex and dynamic pattern of Hoxb3 expression in the developing hindbrain and the associated neural crest of mouse embryos is controlled by three separate cis-regulatory elements: element I (region A), element IIIa, and the r5 enhancer (element IVa). We have examined the cis-regulatory element IIIa by transgenic and mutational analysis to determine the upstream trans-acting factors and mechanisms that are involved in controlling the expression of the mouse Hoxb3 gene in the anterior spinal cord and hindbrain up to the r5/r6 boundary, as well as the associated neural crest which migrate to the third and posterior branchial arches and to the gut. By deletion analysis, we have identified the sequence requirements within a 482-bp element III482. Two Hox binding sites are identified in element III482 and we have shown that in vitro both Hoxb3 and Hoxb4 proteins can interact with these Hox binding sites, suggesting that auto/cross-regulation is required for establishing the expression of Hoxb3 in the neural tube domain. Interestingly, we have identified a novel GCCAGGC sequence motif within element III482, which is also required to direct gene expression to a subset of the expression domains except for rhombomere 6 and the associated neural crest migrating to the third and posterior branchial arches. Element III482 can direct a higher level of reporter gene expression in r6, which led us to investigate whether kreisler is involved in regulating Hoxb3 expression in r6 through this element. However, our transgenic and mutational analysis has demonstrated that, although kreisler binding sites are present, they are not required for the establishment or maintenance of reporter gene expression in r6. Our results have provided evidence that the expression of Hoxb3 in the neural tube up to the r5/r6 boundary is auto/cross-regulated by Hox genes and expression of Hoxb3 in r6 does not require kreisler.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Homeobox , Rhombencephalon/metabolism , Spinal Cord/metabolism , Animals , Base Sequence , Binding Sites , DNA , Electrophoretic Mobility Shift Assay , Enhancer Elements, Genetic , Mice , Mice, Transgenic , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...