Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 27(43): 435703, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27658641

ABSTRACT

Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

2.
Opt Lett ; 35(10): 1671-3, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479845

ABSTRACT

By irradiating spherical metal nanoparticles embedded in glass with several hundred ultrashort laser pulses at peak intensities of 0.2-1.5 TWcm(2), dichroic microstructures can be written in these nanocomposite materials. The underlying mechanism is transformation of the nanoparticles to prolate shapes. Using a single wavelength, the maximum aspect ratio achievable with this process is limited by partial destruction of particles. Here we show that this limitation can be overcome by simultaneous irradiation with different wavelengths. In particular, adding a relatively weak intensity at 800 nm to the main irradiation at 532 nm increases the maximum aspect ratio of Ag nanoparticles and the resulting separation between polarized surface plasmon bands dramatically. These effects are explained by the efficiency of electric field enhancement in the vicinity of nanoparticles, which influences the directed photoionization needed for particle shape transformation.

3.
Nanoscale Res Lett ; 4(11): 1380-3, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-20628450

ABSTRACT

Bimetallic, initially spherical Ag/Au nanoparticles in glass prepared by ion implantation have been irradiated with intense femtosecond laser pulses at intensities still below the damage threshold of the material surface. This high-intensity laser processing produces dichroism in the irradiated region, which can be assigned to the observed anisotropic nanoparticle shapes with preferential orientation of the longer particle axis along the direction of laser polarization. In addition, the particle sizes have considerably been increased upon processing.

4.
Opt Lett ; 32(21): 3215-7, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17975648

ABSTRACT

The 3D shape of Ag nanoparticles in glass irradiated by fs laser pulses is investigated by optical spectroscopy. It is shown that in general spheroids are produced with their symmetry axis oriented along the direction of the linear laser polarization. Depending on the actual irradiation conditions, oblate or prolate spheroids are obtained. The halo of small Ag clusters and Ag ions around the reshaped particles causes a redshift of the surface plasmon resonances via refractive index increase.

5.
Phys Rev Lett ; 98(5): 058302, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17358909

ABSTRACT

Femtosecond laser pulses tailored with closed-loop, optimal control feedback were used to excite oscillations in C60 with large amplitude by coherent heating of nuclear motion. A characteristic pulse sequence results in significant enhancement of C2 evaporation, a typical energy loss channel of vibrationally hot C60. The separation between subsequent pulses in combination with complementary two-color pump-probe data and time-dependent density functional theory calculations give direct information on the multielectron excitation via the t(1g) resonance followed by efficient coupling to the radial symmetric a(g)(1) breathing mode.

SELECTION OF CITATIONS
SEARCH DETAIL