Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732600

ABSTRACT

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Subject(s)
Cross-Over Studies , Fruit and Vegetable Juices , Interleukin-6 , Lipopolysaccharide Receptors , Malus , Marathon Running , Physical Endurance , Polyphenols , Humans , Male , Female , Adult , Middle Aged , Polyphenols/pharmacology , Polyphenols/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Marathon Running/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides/blood , Fatty Acid-Binding Proteins/blood , Running/physiology , Young Adult
2.
Cell Mol Gastroenterol Hepatol ; 17(5): 785-800, 2024.
Article in English | MEDLINE | ID: mdl-38262589

ABSTRACT

BACKGROUND & AIMS: Changes in phosphatidylcholine levels in the liver have been associated with the development of metabolic dysfunction-associated steatotic liver disease. Here, the effects of supplementing phosphatidylcholine on the development of early signs of metabolic dysfunction-associated steatohepatitis were assessed. METHODS: Male and female C57BL/6J mice were fed a liquid control or a fructose-, fat-, and/or cholesterol-rich diet for 7 or 8 weeks. The diets of female mice were fortified ± phosphatidylcholine (12.5 mg/g diet). In liver tissue and portal blood, indices of liver damage, inflammation, and bacterial endotoxemia were measured. J774A.1 cells and human monocytes preincubated with phosphatidylcholine (0.38 mmol/L) were challenged with lipopolysaccharide (50-100 ng/mL) ± the peroxisome proliferator-activated receptor γ (PPARγ) activator pioglitazone (10 µmol/L) or ± a liver receptor homolog 1 (LRH-1) antagonist 1-(3'-[1-(2-[4-morpholinyl]ethyl)-1H-pyrazol-3-yl]-3-biphenylyl)ethanon (1-10 µmol/L). RESULTS: In fructose-, fat-, and/or cholesterol-rich diet-fed mice the development of fatty liver and the beginning of inflammation were associated with significantly lower hepatic phosphatidylcholine levels when compared with controls. Supplementing phosphatidylcholine significantly attenuated the development of fatty liver and inflammation, being associated with protection against the induction of PPARγ2, and activation of nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor α whereas Lrh1 expression was unchanged. The protective effects of phosphatidylcholine on the lipopolysaccharide-induced activation of J774A.1 cells and human monocytes were attenuated significantly by the PPARγ activator pioglitazone and the LRH-1 antagonist. CONCLUSIONS: Our data suggest that phosphatidylcholine levels in the liver are lower in early metabolic dysfunction-associated steatohepatitis in mice and that supplementation of phosphatidylcholine can diminish the development of metabolic dysfunction-associated steatotic liver disease through mechanisms involving LRH-1/PPARγ2/ nuclear factor κ-light-chain enhancer of activated B-cell signaling.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Female , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , PPAR gamma/metabolism , Pioglitazone , Mice, Inbred C57BL , Lipopolysaccharides , Diet , Inflammation , Dietary Supplements , Cholesterol , Fructose
3.
J Nutr Biochem ; 123: 109495, 2024 01.
Article in English | MEDLINE | ID: mdl-37871765

ABSTRACT

To date the role of the alterations of intestinal microbiota in the development of intestinal barrier dysfunction in settings of nonalcoholic fatty liver disease (NAFLD) has not been fully understood. Here, we assessed the effect of antibiotics on development of NAFLD and their impact on intestinal barrier dysfunction. Male C57BL/6J mice were either pair-fed a liquid control diet (C) or fat- and fructose-rich diet (FFr) +/- antibiotics (AB, ampicillin/vancomycin/metronidazole/gentamycin) for 7 weeks. Fasting blood glucose was determined and markers of liver damage, inflammation, intestinal barrier function, and microbiota composition were assessed. The development of hepatic steatosis with early signs of inflammation found in FFr-fed mice was significantly abolished in FFr+AB-fed mice. Also, while prevalence of bacteria in feces was not detectable and TLR4 ligand levels in portal plasma were at the level of controls in FFr+AB-fed mice, impairments of intestinal barrier function like an increased permeation of xylose and iNOS protein levels persisted to a similar extent in both FFr-fed groups irrespective of AB use. Exposure of everted small intestinal tissue sacs of naïve mice to fructose resulted in a significant increase in tissue permeability and loss of tight junction proteins, being not affected by the presence of AB, whereas the concomitant treatment of tissue sacs with the NOS inhibitor aminoguanidine attenuated these alterations. Taken together, our data suggest that intestinal barrier dysfunction in diet-induced NAFLD in mice may not be predominantly dependent on changes in intestinal microbiota but rather that fructose-induced alterations of intestinal NO-homeostasis might be critically involved.


Subject(s)
Gastrointestinal Diseases , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mice, Inbred C57BL , Diet/adverse effects , Inflammation/metabolism , Fructose/metabolism , Diet, High-Fat
4.
Biomolecules ; 13(11)2023 10 26.
Article in English | MEDLINE | ID: mdl-38002262

ABSTRACT

L-Citrulline (L-Cit) is discussed to possess a protective effect on intestinal barrier dysfunction but also to diminish aging-associated degenerative processes. Here, the effects of L-Cit on lifespan were assessed in C. elegans, while the effects of L-Cit on aging-associated decline were determined in C57BL/6J mice. For lifespan analysis, C. elegans were treated with ±5 mM L-Cit. Twelve-month-old male C57BL/6J mice (n = 8-10/group) fed a standard chow diet received drinking water ± 2.5 g/kg/d L-Cit or 5 g/kg/d hydrolyzed soy protein (Iso-N-control) for 16 or 32 weeks. Additionally, 4-month-old C57BL/6J mice were treated accordingly for 8 weeks. Markers of senescence, glucose tolerance, intestinal barrier function, and intestinal microbiota composition were analyzed in mice. L-Cit treatment significantly extended the lifespan of C. elegans. The significant increase in markers of senescence and signs of impaired glucose tolerance found in 16- and 20-month-old control mice was attenuated in L-Cit-fed mice, which was associated with protection from intestinal barrier dysfunction and a decrease in NO2- levels in the small intestine, while no marked differences in intestinal microbiota composition were found when comparing age-matched groups. Our results suggest that pharmacological doses of L-Cit may have beneficial effects on lifespan in C. elegans and aging-associated decline in mice.


Subject(s)
Citrulline , Longevity , Mice , Male , Animals , Citrulline/pharmacology , Caenorhabditis elegans , Mice, Inbred C57BL , Aging , Glucose
5.
Cells ; 12(17)2023 08 27.
Article in English | MEDLINE | ID: mdl-37681885

ABSTRACT

Emerging evidence implicate the 'microbiota-gut-brain axis' in cognitive aging and neuroinflammation; however, underlying mechanisms still remain to be elucidated. Here, we assessed if potential alterations in intestinal barrier function and microbiota composition as well as levels of two key pattern-recognition receptors namely Toll-like receptor (TLR) 2 and TLR4, in blood and different brain regions, and depending signaling cascades are paralleling aging associated alterations of cognition in healthy aging mice. Cognitive function was assessed in the Y-maze and intestinal and brain tissue and blood were collected in young (4 months old) and old (24 months old) male C57BL/6 mice to determine intestinal microbiota composition by Illumina amplicon sequencing, the concentration of TLR2 and TLR4 ligands in plasma and brain tissue as well as to determine markers of intestinal barrier function, senescence and TLR2 and TLR4 signaling. Cognitive function was significantly impaired in old mice. Also, in old mice, intestinal microbiota composition was significantly altered, while the relative abundance of Gram-negative or Gram-positive bacteria in the small and large intestines at different ages was not altered. Moreover, intestinal barrier function was impaired in small intestine of old mice, and the levels of TLR2 and TLR4 ligands were also significantly higher in both portal and peripheral blood. Furthermore, levels of TLR2 and TLR4 ligands, and downstream markers of TLR signaling were higher in the hippocampal and prefrontal cortex of old mice compared to young animals. Taken together, our results suggest that even in 'healthy' aging, cognitive function is impaired in mice going along with an increased intestinal translocation of TLR ligands and alterations of TLR signaling in several brain regions.


Subject(s)
Gastrointestinal Diseases , Toll-Like Receptor 2 , Male , Animals , Mice , Mice, Inbred C57BL , Ligands , Toll-Like Receptor 4 , Brain , Cognition
6.
Redox Biol ; 66: 102870, 2023 10.
Article in English | MEDLINE | ID: mdl-37683301

ABSTRACT

Tumor necrosis factor alpha (TNFα) is thought to be a critical factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we determined the effects of a treatment with the anti-TNFα antibody infliximab and a genetic deletion of TNFα, respectively, in the development of non-obese diet-induced early metabolic dysfunction-associated steatohepatitis (MASH) in mice. The treatment with infliximab improved markers of liver damage in mice with pre-existing early MASH. In TNFα-/- mice, the development of early signs of MASH and insulin resistance was significantly attenuated compared to wild-type animals. While mRNA expression of proinflammatory cytokines like interleukin 1ß (Il1b) and interleukin 6 (Il6) were significantly lower in livers of MASH-diet-fed TNFα-/- mice compared to wild-type mice with early MASH, markers of intestinal barrier function were similarly impaired in both MASH-diet-fed groups compared to controls. Our data suggest that TNFα is a key regulator of hepatic inflammation and insulin resistance associated with the development of early non-obese MASH.


Subject(s)
Fatty Liver , Insulin Resistance , Metabolic Diseases , Animals , Mice , Tumor Necrosis Factor-alpha/genetics , Infliximab , Diet , Inflammation/genetics
7.
Nutrients ; 15(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37764821

ABSTRACT

Sugar-rich diets, but also the use of intense sweeteners, may alter intestinal barrier function. Here, we assessed the effect of sucrose and sucralose on post-prandial endotoxemia in a randomized placebo-controlled single-blinded crossover-designed study. Following a 2-day standardization of their diet, healthy men and women received a beverage containing either sucrose, sucralose (iso-sweet) or an isocaloric combination of sucralose + maltodextrin. Plasma endotoxin levels were measured after consumption of the respective beverages. Moreover, the effect of sucrose and sucralose on intestinal permeability was assessed in Caco-2 cells and ex vivo in an everted gut sac model. The nutritional standardization recommended by nutrition societies was associated with a significant decrease in plasma endotoxin levels. The intake of the sucrose-sweetened beverage resulted in a significant increase in plasma endotoxin levels while being unchanged after the intake of sucralose-sweetened beverages. In Caco-2 cells, the challenge with sucrose but not with sucralose significantly increased the permeation of the bacterial endotoxin across the cell monolayer. Xylose permeation in small intestinal everted tissue sacs was significantly higher upon the challenge with sucrose while remaining unchanged in sucralose-challenged sacs. Our data suggest that an acute intake of physiologically relevant amounts of sucrose but not of sucralose can result in post-prandial endotoxemia.


Subject(s)
Endotoxemia , Sweetening Agents , Male , Female , Young Adult , Humans , Sweetening Agents/pharmacology , Caco-2 Cells , Sucrose/pharmacology , Endotoxins , Excipients
8.
Eur J Nutr ; 62(8): 3113-3124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596353

ABSTRACT

PURPOSE: Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS: Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION: In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.


Subject(s)
Fructose , Non-alcoholic Fatty Liver Disease , Animals , Humans , Fructose/adverse effects , Fructose/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Intestines , Diet
9.
Liver Int ; 43(8): 1793-1802, 2023 08.
Article in English | MEDLINE | ID: mdl-37249050

ABSTRACT

BACKGROUND: Nucleotide-binding oligomerization domain containing 2 (NOD2) risk variants lead to impaired mucosal barrier function, increased bacterial translocation (BT), and systemic inflammation. AIM: To evaluate the association between the presence of NOD2 risk variants, BT, inflammation, and hepatic encephalopathy (HE). PATIENTS AND METHODS: This prospective multicenter study included patients with cirrhosis and testing for NOD2 risk variants (p.R702W, p.G908R, c.3020insC, N289S, and c.-958T>C). Patients were evaluated for covert (C) and overt (O) HE. Markers of systemic inflammation (leukocytes, CRP, IL-6, LBP) and immune activation (soluble CD14) as well as bacterial endotoxin (hTRL4 activation) were determined in serum. RESULTS: Overall, 172 patients (70% men; median age 60 [IQR 54-66] years; MELD 12 [IQR 9-16]; 72% ascites) were included, of whom 53 (31%) carried a NOD2 risk variant. In this cohort, 11% presented with OHE and 27% and CHE. Presence and severity of HE and surrogates of inflammation, BT, and immune activation did not differ between patients with and without a NOD2 risk variant, also not after adjustment for MELD. HE was associated with increased ammonia and systemic inflammation, as indicated by elevated CRP (w/o HE: 7.2 [2.7-16.7]; with HE 12.6 [4.5-29.7] mg/dL; p < 0.001) and elevated soluble CD14 (w/o HE 2592 [2275-3033]; with HE 2755 [2410-3456] ng/mL; p = 0.025). CONCLUSIONS: The presence of NOD2 risk variants in patients with cirrhosis is not associated with HE and has no marked impact on inflammation, BT, or immune activation. In contrast, the presence of HE was linked to ammonia, the acute phase response, and myeloid cell activation.


Subject(s)
Hepatic Encephalopathy , Nod2 Signaling Adaptor Protein , Female , Humans , Male , Middle Aged , Ammonia , Bacterial Translocation , Hepatic Encephalopathy/complications , Inflammation , Lipopolysaccharide Receptors , Liver Cirrhosis/complications , Nod2 Signaling Adaptor Protein/genetics , Prospective Studies
10.
Redox Biol ; 58: 102528, 2022 12.
Article in English | MEDLINE | ID: mdl-36356464

ABSTRACT

Aging is considered a state of low grade inflammation, occurring in the absence of any overt infection often referred to as 'inflammaging'. Maintaining intestinal homeostasis may be a target to extend a healthier status in older adults. Here, we report that even in healthy older men low grade bacterial endotoxemia is prevalent. In addition, employing multiple mouse models, we also show that while intestinal microbiota composition changes significantly during aging, fecal microbiota transplantation to old mice does not protect against aging-associated intestinal barrier dysfunction in small intestine. Rather, intestinal NO homeostasis and arginine metabolism mediated through arginase and NO synthesis is altered in small intestine of aging mice. Treatment with the arginase inhibitor norNOHA prevented aging-associated intestinal barrier dysfunction, low grade endotoxemia and delayed the onset of senescence in peripheral tissue e.g., liver. Intestinal arginine and NO metabolisms could be a target in the prevention of aging-associated intestinal barrier dysfunction and subsequently decline and 'inflammaging'.


Subject(s)
Arginine , Endotoxemia , Intestines , Nitric Oxide , Animals , Mice , Aging , Arginase/metabolism , Arginine/metabolism , Intestines/metabolism , Intestines/physiopathology , Nitric Oxide/metabolism
11.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36293555

ABSTRACT

Infections with Gram-negative bacteria are still among the leading causes of infection-related deaths. Several studies suggest that the chalcone xanthohumol (XN) found in hop (Humulus lupulus) possesses anti-inflammatory effects. In a single-blinded, placebo controlled randomized cross-over design study we assessed if the oral intake of a single low dose of 0.125 mg of a XN derived through a XN-rich hop extract (75% XN) affects lipopolysaccharide (LPS)-induced immune responses in peripheral blood mononuclear cells (PBMCs) ex vivo in normal weight healthy women (n = 9) (clinicaltrials.gov: NCT04847193) and determined associated molecular mechanisms. LPS-stimulation of PBMCs isolated from participants 1 h after the intake of the placebo for 2 h resulted in a significant induction of pro-inflammatory cytokine release which was significantly attenuated when participants had consumed XN. The XN-dependent attenuation of proinflammatory cytokine release was less pronounced 6 h after the LPS stimulation while the release of sCD14 was significantly reduced at this timepoint. The LPS-dependent activation of hTLR4 transfected HEK293 cells was significantly and dose-dependently suppressed by the XN-rich hop extract which was attenuated when cells were co-challenged with sCD14. Taken together, our results suggest even a one-time intake of low doses of XN consumed in a XN-rich hop extract can suppress LPS-dependent stimulation of PBMCs and that this is related to the interaction of the hop compound with the CD14/TLR4 signaling cascade.


Subject(s)
Chalcones , Humulus , Propiophenones , Humans , Female , Lipopolysaccharides , Lipopolysaccharide Receptors , Toll-Like Receptor 4 , Leukocytes, Mononuclear , Endotoxins , HEK293 Cells , Propiophenones/pharmacology , Flavonoids/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines
12.
Eur J Nutr ; 61(8): 4155-4166, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35857130

ABSTRACT

PURPOSE: The aim of the study was to determine if xanthohumol, a prenylated chalcone found in Hop (Humulus lupulus), has anti-inflammatory effects in healthy humans if applied in low doses achievable through dietary intake. METHODS: In a placebo-controlled single-blinded cross-over design study, 14 healthy young men and women either consumed a beverage containing 0.125 mg xanthohumol or a placebo. Peripheral blood mononuclear cells (PBMCs) were isolated before and 1 h after the intake of the beverages. Subsequently, PBMCs were stimulated with or without lipoteichoic acid (LTA) for 24 and 48 h. Concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and soluble cluster of differentiation (sCD14) protein were determined in cell culture supernatant. Furthermore, hTLR2 transfected HEK293 cells were stimulated with LTA in the presence or absence of xanthohumol and sCD14. RESULTS: The stimulation of PBMCs with LTA for 24 and 48 h resulted in a significant induction of IL-1ß, IL-6, and sCD14 protein release in PBMCs of both, fasted subjects and subjects after the ingestion of the placebo. In contrast, after ingesting xanthohumol, LTA-dependent induction of IL-1ß, IL-6, and sCD14 protein release from PBMCs was not significantly higher than in unstimulated cells after 48 h. In hTLR2 transfected HEK293 cells xanthohumol significantly suppressed the LTA-dependent activation of cells, an effect attenuated when cells were co-incubated with sCD14. CONCLUSION: The results of our study suggest that an ingestion of low doses of xanthohumol can suppress the LTA-dependent stimulation of PBMCs through mechanisms involving the interaction of CD14 with TLR2. Study registered at ClinicalTrials.gov (NCT04847193, 22.03.2022).


Subject(s)
Chalcones , Lipopolysaccharide Receptors , Female , Humans , Male , Anti-Inflammatory Agents/pharmacology , HEK293 Cells , Interleukin-1beta , Interleukin-6 , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharides/pharmacology , Toll-Like Receptor 2
13.
Metabolism ; 133: 155233, 2022 08.
Article in English | MEDLINE | ID: mdl-35654114

ABSTRACT

BACKGROUND AND AIMS: Insulin resistance is among the key risk factors for the development of non-alcoholic fatty liver disease (NAFLD). Recently, it has been reported that GW9662, shown to be a potent peroxisome proliferator-activated receptor gamma (PPARγ) antagonist, may improve insulin sensitivity in settings of type 2 diabetes. Here, we determined the effects of GW9662 on the development of NAFLD and molecular mechanisms involved. METHODS: Female C57BL/6J mice were pair-fed either a liquid control diet (C) or a fat-, fructose- and cholesterol-rich diet (FFC) for 8 weeks while either being treated with GW9662 (1 mg/kg body weight; C+GW9662 and FFC+GW9662) or vehicle (C and FFC) i.p. three times weekly. Indices of liver damage and inflammation, parameters of glucose metabolism and portal endotoxin levels were determined. Lipopolysaccharide (LPS)-challenged J774A.1 cells were treated with 10 µM GW9662. RESULTS: Despite similar caloric intake the development of NAFLD and insulin resistance were significantly attenuated in FFC+GW9662-treated mice when compared to FFC-fed animals. Bacterial endotoxin levels in portal plasma were almost similarly increased in both FFC-fed groups while expressions of toll-like receptor 4 (Tlr4), myeloid differentiation primary response 88 (Myd88) and interleukin 1 beta (Il1b) as well as nitrite (NO2-) concentration in liver were significantly higher in FFC-fed mice than in FFC+GW9662-treated animals. In J774A.1 cells, treatment with GW9662 significantly attenuated LPS-induced expression of Il1b, interleukin 6 (Il6) and inducible nitric oxide synthase (iNos) as well as NO2- formation. CONCLUSION: In summary, our data suggest that the PPARγ antagonist GW9662 attenuates the development of a diet-induced NAFLD and that this is associated with a protection against the activation of the TLR4 signaling cascade.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Anilides , Animals , Diabetes Mellitus, Type 2/metabolism , Endotoxins/metabolism , Female , Lipopolysaccharides/pharmacology , Liver/metabolism , Mice , Mice, Inbred C57BL , Nitrogen Dioxide/metabolism , Nitrogen Dioxide/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR gamma/metabolism , Toll-Like Receptor 4/metabolism
14.
J Cell Mol Med ; 26(4): 1206-1218, 2022 02.
Article in English | MEDLINE | ID: mdl-35029027

ABSTRACT

Changes in intestinal nitric oxide metabolism are discussed to contribute for the development of intestinal barrier dysfunction in non-alcoholic fatty liver disease (NAFLD). To induce steatosis, female C57BL/6J mice were pair-fed with a liquid control diet (C) or a fat-, fructose- and cholesterol-rich diet (FFC) for 8 weeks. Mice received the diets ± 2.49 g L-arginine/kg bw/day for additional 5 weeks. Furthermore, mice fed C or FFC ± L-arginine/kg bw/day for 8 weeks were concomitantly treated with the arginase inhibitor Nω -hydroxy-nor-L-arginine (nor-NOHA, 0.01 g/kg bw). Liver damage, intestinal barrier function, nitric oxide levels and arginase activity in small intestine were assessed. Also, arginase activity was measured in serum from 13 patients with steatosis (NAFL) and 14 controls. The development of steatosis with beginning inflammation was associated with impaired intestinal barrier function, increased nitric oxide levels and a loss of arginase activity in small intestine in mice. L-arginine supplementation abolished the latter along with an improvement of intestinal barrier dysfunction; nor-NOHA attenuated these effects. In patients with NAFL, arginase activity in serum was significantly lower than in healthy controls. Our data suggest that increased formation of nitric oxide and a loss of intestinal arginase activity is critical in NAFLD-associated intestinal barrier dysfunction.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Arginine/metabolism , Arginine/pharmacology , Female , Homeostasis , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4/metabolism
15.
Nutrients ; 13(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068838

ABSTRACT

Changes in intestinal microbiome and barrier function are critical in the development of alcohol-related liver disease (ALD). Here, we determined the effects of a one-week alcohol withdrawal on parameters of intestinal barrier function in heavy drinkers with ALD in comparison to healthy non-drinkers (controls). In serum samples of 17 controls (m = 10/f = 7) and 37 age-matched ALD patients (m = 26/f = 11) undergoing a one-week alcohol withdrawal, markers of liver health and intestinal barrier function were assessed. Liver damage, e.g., fibrosis and hepatic steatosis, were assessed using FibroScan. Before alcohol withdrawal, markers of liver damage, lipopolysaccharide binding protein (LBP) and overall TLR4/TLR2 ligands in serum were significantly higher in ALD patients than in controls, whereas intestinal fatty acid binding protein (I-FABP) and zonulin protein concentrations in serum were lower. All parameters, with the exception of LBP, were significantly improved after alcohol withdrawal; however, not to the level of controls. Our data suggest that one-week of abstinence improves markers of intestinal barrier function and liver health in ALD patients.


Subject(s)
Alcoholism , Biomarkers/blood , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Acute-Phase Proteins , Adult , Bacterial Toxins/adverse effects , Bacterial Toxins/blood , Carrier Proteins , Endotoxins/blood , Fatty Liver/metabolism , Female , HEK293 Cells , Humans , Liver Cirrhosis , Male , Membrane Glycoproteins , Middle Aged , Permeability , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...