Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37771915

ABSTRACT

Detailing the physical basis of neural circuits with large-volume serial electron microscopy (EM), 'connectomics', has emerged as an invaluable tool in the neuroscience armamentarium. However, imaging synaptic resolution connectomes is currently limited to either transmission electron microscopy (TEM) or scanning electron microscopy (SEM). Here, we describe a third way, using photoemission electron microscopy (PEEM) which illuminates ultra-thin brain slices collected on solid substrates with UV light and images the photoelectron emission pattern with a wide-field electron microscope. PEEM works with existing sample preparations for EM and routinely provides sufficient resolution and contrast to reveal myelinated axons, somata, dendrites, and sub-cellular organelles. Under optimized conditions, PEEM provides synaptic resolution; and simulation and experiments show that PEEM can be transformatively fast, at Gigahertz pixel rates. We conclude that PEEM imaging leverages attractive aspects of SEM and TEM, namely reliable sample collection on robust substrates combined with fast wide-field imaging, and could enable faster data acquisition for next-generation connectomics.

2.
Ultramicroscopy ; 253: 113809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544269

ABSTRACT

A new, complementary technique based on Photo Emission Electron Microscopy (PEEM) is demonstrated. In contrast to PEEM, the sample is placed on a transparent substrate and is illuminated from the back side while electrons are collected from the other (front) side. In this paper, the working principle of this technique, coined back-illuminated PEEM (BIPEEM), is described. In BIPEEM, the electron intensity is strongly thickness-dependent. This dependence can be described by a simple model which contains the optical attenuation length and the electron mean free path. Electrons forming an image in BIPEEM hence carry information of the inner part of the sample, as well as of the surface, as we demonstrate experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...