Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716733

ABSTRACT

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Sporozoites , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , CD8-Positive T-Lymphocytes/immunology , Adult , Sporozoites/immunology , Male , CD4-Positive T-Lymphocytes/immunology , Chloroquine/therapeutic use , Chloroquine/pharmacology , Female , Young Adult , Gabon , Vaccination/methods , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Europe , Parasitemia/immunology , Adolescent , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , European People
3.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37428185

ABSTRACT

Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.


Subject(s)
Allergens , Rhinitis, Allergic, Perennial , Humans , Rhinitis, Allergic, Perennial/pathology , Nasal Mucosa , Myeloid Cells/pathology , Inflammation/pathology
4.
PLoS One ; 17(9): e0275013, 2022.
Article in English | MEDLINE | ID: mdl-36155987

ABSTRACT

Metabolomics provides a powerful tool to study physiological changes in response to various perturbations such as vaccination. We explored whether metabolomic changes could be seen after vaccination in a phase I trial where Gabonese adults living either in rural or semi-urban areas received the subunit hookworm vaccine candidates (Na-GST-1 and Na-APR-1 (M74) adjuvanted with Alhydrogel plus GLA-AF (n = 24) or the hepatitis B vaccine (n = 8) as control. Urine samples were collected and assayed using targeted 1H NMR spectroscopy. At baseline, a set of metabolites significantly distinguished rural from semi-urban individuals. The pre- and post-vaccination comparisons indicated significant changes in few metabolites but only one day after the first vaccination. There was no relationship with immunogenicity. In conclusion, in a small phase 1 trial, urinary metabolomics could distinguish volunteers with different environmental exposures and reflected the safety of the vaccines but did not show a relationship to immunogenicity.


Subject(s)
Ancylostomatoidea , Hookworm Infections , Adjuvants, Immunologic , Adult , Aluminum Hydroxide , Animals , Gabon , Hepatitis B Vaccines , Humans , Immunogenicity, Vaccine
5.
PLoS Negl Trop Dis ; 15(10): e0009732, 2021 10.
Article in English | MEDLINE | ID: mdl-34597297

ABSTRACT

Two hookworm vaccine candidates, Na-GST-1 and Na-APR-1, formulated with Glucopyranosyl Lipid A (GLA-AF) adjuvant, have been shown to be safe, well tolerated, and to induce antibody responses in a Phase 1 clinical trial (Clinicaltrials.gov NCT02126462) conducted in Gabon. Here, we characterized T cell responses in 24 Gabonese volunteers randomized to get vaccinated three times with Na-GST-1 and Na-APR-1 at doses of 30µg (n = 8) or 100µg (n = 10) and as control Hepatitis B (n = 6). Blood was collected pre- and post-vaccination on days 0, 28, and 180 as well as 2-weeks after each vaccine dose on days 14, 42, and 194 for PBMCs isolation. PBMCs were stimulated with recombinant Na-GST-1 or Na-APR-1, before (days 0, 28 and 180) and two weeks after (days 14, 42 and 194) each vaccination and used to characterize T cell responses by flow and mass cytometry. A significant increase in Na-GST-1 -specific CD4+ T cells producing IL-2 and TNF, correlated with specific IgG antibody levels, after the third vaccination (day 194) was observed. In contrast, no increase in Na-APR-1 specific T cell responses were induced by the vaccine. Mass cytometry revealed that, Na-GST-1 cytokine producing CD4+ T cells were CD161+ memory cells expressing CTLA-4 and CD40-L. Blocking CTLA-4 enhanced the cytokine response to Na-GST-1. In Gabonese volunteers, hookworm vaccine candidate, Na-GST-1, induces detectable CD4+ T cell responses that correlate with specific antibody levels. As these CD4+ T cells express CTLA-4, and blocking this inhibitory molecules resulted in enhanced cytokine production, the question arises whether this pathway can be targeted to enhance vaccine immunogenicity.


Subject(s)
Ancylostomatoidea/immunology , Antigens, Helminth/administration & dosage , Hookworm Infections/immunology , Hookworm Infections/prevention & control , T-Lymphocytes/immunology , Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adult , Ancylostomatoidea/genetics , Animals , Antibodies, Helminth/immunology , Antibody Formation , Antigens, Helminth/genetics , Antigens, Helminth/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Female , Gabon , Hookworm Infections/parasitology , Humans , Immunity, Cellular , Male , Middle Aged , Vaccination , Vaccines/genetics , Vaccines/immunology , Young Adult
6.
Nat Immunol ; 22(5): 654-665, 2021 05.
Article in English | MEDLINE | ID: mdl-33888898

ABSTRACT

Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.


Subject(s)
Adaptive Immunity/immunology , Disease Susceptibility/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adaptive Immunity/genetics , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Black People/genetics , Dendritic Cells/immunology , Disease Susceptibility/blood , Disease Susceptibility/parasitology , Female , Healthy Volunteers , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-gamma/metabolism , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Male , RNA-Seq , Systems Analysis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , White People/genetics , Young Adult
7.
Nat Med ; 26(3): 326-332, 2020 03.
Article in English | MEDLINE | ID: mdl-32066978

ABSTRACT

Schistosomiasis treatment relies on the use of a single drug, praziquantel, which is insufficient to control transmission in highly endemic areas1. Novel medicines and vaccines are urgently needed2,3. An experimental human model for schistosomiasis could accelerate the development of these products. We performed a dose-escalating clinical safety trial in 17 volunteers with male Schistosoma mansoni cercariae, which do not produce eggs (clinicaltrials.gov NCT02755324), at the Leiden University Medical Center, the Netherlands. The primary endpoints were adverse events and infectivity. We found a dose-related increase in adverse events related to acute schistosomiasis syndrome, which occurred in 9 of 17 volunteers. Overall, 5 volunteers (all 3 of the high dose group and 2 of 11 of the medium dose group) reported severe adverse events. Worm-derived circulating anodic antigen, the biomarker of the primary infection endpoint, peaked in 82% of volunteers at 3-10 weeks following exposure. All volunteers showed IgM and IgG1 seroconversion and worm-specific cytokine production by CD4+ T cells. All volunteers were cured with praziquantel provided at 12 weeks after exposure. Infection with 20 Schistosoma mansoni cercariae led to severe adverse events in 18% of volunteers and high infection rates. This infection model paves the way for fast-track product development for treatment and prevention of schistosomiasis.


Subject(s)
Antiparasitic Agents/therapeutic use , Models, Biological , Schistosoma mansoni/physiology , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/immunology , Vaccines/immunology , Adolescent , Adult , Animals , Antigens, Helminth/blood , Antigens, Helminth/immunology , Antiparasitic Agents/pharmacology , Cytokines/blood , Female , Humans , Immunity, Humoral/drug effects , Immunoglobulin M/blood , Male , Middle Aged , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/blood , Schistosomiasis mansoni/microbiology , Young Adult
8.
Sci Transl Med ; 12(524)2020 01 01.
Article in English | MEDLINE | ID: mdl-31894102

ABSTRACT

Helminth infections induce strong type 2 and regulatory responses, but the degree of heterogeneity of such cells is not well characterized. Using mass cytometry, we profiled these cells in Europeans and Indonesians not exposed to helminths and in Indonesians residing in rural areas infected with soil-transmitted helminths. To assign immune alteration to helminth infection, the profiling was performed before and 1 year after deworming. Very distinct signatures were found in Europeans and Indonesians, showing expanded frequencies of T helper 2 cells, particularly CD161+ cells and ILC2s in helminth-infected Indonesians, which was confirmed functionally through analysis of cytokine-producing cells. Besides ILC2s and CD4+ T cells, CD8+ T cells and γδ T cells in Indonesians produced type 2 cytokines. Regulatory T cells were also expanded in Indonesians, but only those expressing CTLA-4, and some coexpressed CD38, HLA-DR, ICOS, or CD161. CD11c+ B cells were found to be the main IL-10 producers among B cells in Indonesians, a subset that was almost absent in Europeans. A number of the distinct immune profiles were driven by helminths as the profiles reverted after clearance of helminth infections. Moreover, Indonesians with no helminth infections residing in an urban area showed immune profiles that resembled Europeans rather than rural Indonesians, which excludes a major role for ethnicity. Detailed insight into the human type 2 and regulatory networks could provide opportunities to target these cells for more precise interventions.


Subject(s)
Helminthiasis/immunology , Helminths/physiology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Europe , Helminthiasis/drug therapy , Humans , Indonesia , Interleukin-10/metabolism , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...