Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14724, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956070

ABSTRACT

Across vertebrates, adaptive behaviors, like feeding and avoiding predators, are linked to lateralized brain function. The presence of the behavioral manifestations of these biases are associated with increased task success. Additionally, when an individual's direction of bias aligns with the majority of the population, it is linked to social advantages. However, it remains unclear if behavioral biases in humans correlate with the same advantages. This large-scale study (N = 313-1661, analyses dependent) examines whether the strength and alignment of behavioral biases associate with cognitive and social benefits respectively in humans. To remain aligned with the animal literature, we evaluate motor-sensory biases linked to motor-sequencing and emotion detection to assess lateralization. Results reveal that moderate hand lateralization is positively associated with task success and task success is, in turn, associated with language fluency, possibly representing a cascade effect. Additionally, like other vertebrates, the majority of our human sample possess a 'standard' laterality profile (right hand bias, left visual bias). A 'reversed' profile is rare by comparison, and associates higher self-reported social difficulties and increased rate of autism and/or attention deficit hyperactivity disorder. We highlight the importance of employing a comparative theoretical framing to illuminate how and why different laterization profiles associate with diverging social and cognitive phenotypes.


Subject(s)
Cognition , Functional Laterality , Humans , Cognition/physiology , Male , Female , Functional Laterality/physiology , Adult , Young Adult , Adolescent , Social Skills , Middle Aged , Emotions/physiology
2.
PLoS Comput Biol ; 17(3): e1008833, 2021 03.
Article in English | MEDLINE | ID: mdl-33711008

ABSTRACT

PDkit is an open source software toolkit supporting the collaborative development of novel methods of digital assessment for Parkinson's Disease, using symptom measurements captured continuously by wearables (passive monitoring) or by high-use-frequency smartphone apps (active monitoring). The goal of the toolkit is to help address the current lack of algorithmic and model transparency in this area by facilitating open sharing of standardised methods that allow the comparison of results across multiple centres and hardware variations. PDkit adopts the information-processing pipeline abstraction incorporating stages for data ingestion, quality of information augmentation, feature extraction, biomarker estimation and finally, scoring using standard clinical scales. Additionally, a dataflow programming framework is provided to support high performance computations. The practical use of PDkit is demonstrated in the context of the CUSSP clinical trial in the UK. The toolkit is implemented in the python programming language, the de facto standard for modern data science applications, and is widely available under the MIT license.


Subject(s)
Data Science , Diagnosis, Computer-Assisted/methods , Parkinson Disease/diagnosis , Software , Humans , Mobile Applications , Smartphone
3.
NPJ Parkinsons Dis ; 6(1): 36, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33293531

ABSTRACT

Digital assessments of motor severity could improve the sensitivity of clinical trials and personalise treatment in Parkinson's disease (PD) but have yet to be widely adopted. Their ability to capture individual change across the heterogeneous motor presentations typical of PD remains inadequately tested against current clinical reference standards. We conducted a prospective, dual-site, crossover-randomised study to determine the ability of a 16-item smartphone-based assessment (the index test) to predict subitems from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) as assessed by three blinded clinical raters (the reference-standard). We analysed data from 60 subjects (990 smartphone tests, 2628 blinded video MDS-UPDRS III subitem ratings). Subject-level predictive performance was quantified as the leave-one-subject-out cross-validation (LOSO-CV) accuracy. A pre-specified analysis classified 70.3% (SEM 5.9%) of subjects into a similar category to any of three blinded clinical raters and was better than random (36.7%; SEM 4.3%) classification. Post hoc optimisation of classifier and feature selection improved performance further (78.7%, SEM 5.1%), although individual subtests were variable (range 53.2-97.0%). Smartphone-based measures of motor severity have predictive value at the subject level. Future studies should similarly mitigate against subjective and feature selection biases and assess performance across a range of motor features as part of a broader strategy to avoid overly optimistic performance estimates.

SELECTION OF CITATIONS
SEARCH DETAIL
...