Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473606

ABSTRACT

Amorphous silicon carbide (a-SiC) is a wide-bandgap semiconductor with high robustness and biocompatibility, making it a promising material for applications in biomedical device passivation. a-SiC thin film deposition has been a subject of research for several decades with a variety of approaches investigated to achieve optimal properties for multiple applications, with an emphasis on properties relevant to biomedical devices in the past decade. This review summarizes the results of many optimization studies, identifying strategies that have been used to achieve desirable film properties and discussing the proposed physical interpretations. In addition, divergent results from studies are contrasted, with attempts to reconcile the results, while areas of uncertainty are highlighted.

2.
Nanotechnology ; 32(23)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33545695

ABSTRACT

Scalable fabrication of Si nanowires with a critical dimension of about 100 nm is essential to a variety of applications. Current techniques used to reach these dimensions often involve e-beam lithography or deep-UV (DUV) lithography combined with resolution enhancement techniques. In this study, we report the fabrication of <150 nm Si nanowires from SOI substrates using DUV lithography (λ = 248 nm) by adjusting the exposure dose. Irregular resist profiles generated by in-plane interference under masking patterns of width 800 nm were optimized to split the resulting features into twin Si nanowires. However, masking patterns of micrometre size or more on the same photomask does not generate split features. The resulting resist profiles are verified by optical lithography computer simulation based on Huygens-Fresnel diffraction theory. Photolithography simulation results validate that the key factors in the fabrication of subwavelength nanostructures are the air gap value and the photoresist thickness. This enables the parallel top-down fabrication of Si nanowires and nanoribbons in a single DUV lithography step as a rapid and inexpensive alternative to conventional e-beam techniques.

3.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942692

ABSTRACT

Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.

5.
Sensors (Basel) ; 15(5): 10686-704, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25954951

ABSTRACT

Nanoporous SnO2 thin films were elaborated to serve as sensing electrodes for label-free DNA detection using electrochemical impedance spectroscopy (EIS). Films were deposited by an electrodeposition process (EDP). Then the non-Faradic EIS behaviour was thoroughly investigated during some different steps of functionalization up to DNA hybridization. The results have shown a systematic decrease of the impedance upon DNA hybridization. The impedance decrease is attributed to an enhanced penetration of ionic species within the film volume. Besides, the comparison of impedance variations upon DNA hybridization between the liquid and vapour phase processes for organosilane (APTES) grafting on the nanoporous SnO2 films showed that vapour-phase method is more efficient. This is due to the fact that the vapour is more effective than the solution in penetrating the nanopores of the films. As a result, the DNA sensors built from vapour-treated silane layer exhibit a higher sensitivity than those produced from liquid-treated silane, in the range of tested target DNA concentration going to 10 nM. Finally, the impedance and fluorescence response signals strongly depend on the types of target DNA molecules, demonstrating a high selectivity of the process on nanoporous SnO2 films.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Dielectric Spectroscopy/instrumentation , Tin Compounds/chemistry , Biosensing Techniques/methods , DNA/chemistry , Dielectric Spectroscopy/methods , Immobilized Nucleic Acids/chemistry , Nucleic Acid Hybridization
6.
Langmuir ; 25(14): 8036-41, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19594181

ABSTRACT

This paper reports on the preparation of silver/antimony-doped tin oxide (Ag/SnO(2):Sb) hybrid interfaces using magnetron sputtering and their characterization. The influence of the Sn target composition (doping with 2 or 5% Sb) on the electrochemical and electrical characteristics of the hybrid interface was investigated using X-ray photoelectron spectroscopy (XPS), sheet resistance measurements, cyclic voltammetry, scanning tunneling microscopy (STM) and surface plasmon resonance (SPR). The best interface in terms of electrical conductivity and SPR signal is a hybrid interface with a 8.5 +/- 0.3 nm thick SnO(2):Sb layer obtained from a Sn target with 2% Sb deposited on 38 nm thick silver film. Different strategies to link functional groups onto the Ag/SnO(2):Sb interface are also presented.

7.
Analyst ; 133(8): 1097-103, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18645653

ABSTRACT

The use of Au/SiO(x) interfaces for the investigation of DNA hybridization using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) simultaneously is demonstrated. Standard glass chemistry was used to link single-stranded DNA (ss-DNA) on aldehyde-terminated Au/SiO(x) interfaces. The layer thickness and amount of grafted oligonucleotides (ODNs) were calculated from SPR on the basis of a multilayer system of glass/Ti/Au/SiO(x)/grafted molecule. Capacitance and resistance values of the modified interface before and after hybridization were calculated from EIS data using an equivalent circuit and allowed the affinity rate constant, K(A) = 4.07 x 10(5) M(-1), to be determined. The EIS results were comparable to those obtained by SPR hybridization kinetics recorded in parallel.


Subject(s)
DNA/analysis , Surface Plasmon Resonance , Electric Impedance , Electrodes , Gold , In Situ Hybridization , Silicon Dioxide , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...