Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 22(2): 442-453, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36688801

ABSTRACT

The microbiome has been shown to be important for human health because of its influence on disease and the immune response. Mass spectrometry is an important tool for evaluating protein expression and species composition in the microbiome but is technically challenging and time-consuming. Multiplexing has emerged as a way to make spectrometry workflows faster while improving results. Here, we present MetaProD (MetaProteomics in Django) as a highly configurable metaproteomic data analysis pipeline supporting label-free and multiplexed mass spectrometry. The pipeline is open-source, uses fully open-source tools, and is integrated with Django to offer a web-based interface for configuration and data access. Benchmarking of MetaProD using multiple metaproteomics data sets showed that MetaProD achieved fast and efficient identification of peptides and proteins. Application of MetaProD to a multiplexed cancer data set resulted in identification of more differentially expressed human proteins in cancer tissues versus healthy tissues as compared to previous studies; in addition, MetaProD identified bacterial proteins in those samples, some of which are differentially abundant.


Subject(s)
Microbiota , Proteomics , Humans , Proteomics/methods , Mass Spectrometry , Bacterial Proteins , Spectrum Analysis
2.
PLoS Comput Biol ; 18(3): e1009397, 2022 03.
Article in English | MEDLINE | ID: mdl-35302987

ABSTRACT

Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , Proteome/analysis , Proteomics/methods
3.
Microbiome ; 9(1): 80, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795009

ABSTRACT

BACKGROUND: A few recent large efforts significantly expanded the collection of human-associated bacterial genomes, which now contains thousands of entities including reference complete/draft genomes and metagenome assembled genomes (MAGs). These genomes provide useful resource for studying the functionality of the human-associated microbiome and their relationship with human health and diseases. One application of these genomes is to provide a universal reference for database search in metaproteomic studies, when matched metagenomic/metatranscriptomic data are unavailable. However, a greater collection of reference genomes may not necessarily result in better peptide/protein identification because the increase of search space often leads to fewer spectrum-peptide matches, not to mention the drastic increase of computation time. Video Abstract METHODS: Here, we present a new approach that uses two steps to optimize the use of the reference genomes and MAGs as the universal reference for human gut metaproteomic MS/MS data analysis. The first step is to use only the high-abundance proteins (HAPs) (i.e., ribosomal proteins and elongation factors) for metaproteomic MS/MS database search and, based on the identification results, to derive the taxonomic composition of the underlying microbial community. The second step is to expand the search database by including all proteins from identified abundant species. We call our approach HAPiID (HAPs guided metaproteomics IDentification). RESULTS: We tested our approach using human gut metaproteomic datasets from a previous study and compared it to the state-of-the-art reference database search method MetaPro-IQ for metaproteomic identification in studying human gut microbiota. Our results show that our two-steps method not only performed significantly faster but also was able to identify more peptides. We further demonstrated the application of HAPiID to revealing protein profiles of individual human-associated bacterial species, one or a few species at a time, using metaproteomic data. CONCLUSIONS: The HAP guided profiling approach presents a novel effective way for constructing target database for metaproteomic data analysis. The HAPiID pipeline built upon this approach provides a universal tool for analyzing human gut-associated metaproteomic data.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Humans , Metagenomics , Peptides/genetics , Proteomics , Tandem Mass Spectrometry
4.
PLoS Comput Biol ; 16(10): e1007951, 2020 10.
Article in English | MEDLINE | ID: mdl-33125363

ABSTRACT

Microbial community members exhibit various forms of interactions. Taking advantage of the increasing availability of microbiome data, many computational approaches have been developed to infer bacterial interactions from the co-occurrence of microbes across diverse microbial communities. Additionally, the introduction of genome-scale metabolic models have also enabled the inference of cooperative and competitive metabolic interactions between bacterial species. By nature, phylogenetically similar microbial species are more likely to share common functional profiles or biological pathways due to their genomic similarity. Without properly factoring out the phylogenetic relationship, any estimation of the competition and cooperation between species based on functional/pathway profiles may bias downstream applications. To address these challenges, we developed a novel approach for estimating the competition and complementarity indices for a pair of microbial species, adjusted by their phylogenetic distance. An automated pipeline, PhyloMint, was implemented to construct competition and complementarity indices from genome scale metabolic models derived from microbial genomes. Application of our pipeline to 2,815 human-gut associated bacteria showed high correlation between phylogenetic distance and metabolic competition/cooperation indices among bacteria. Using a discretization approach, we were able to detect pairs of bacterial species with cooperation scores significantly higher than the average pairs of bacterial species with similar phylogenetic distances. A network community analysis of high metabolic cooperation but low competition reveals distinct modules of bacterial interactions. Our results suggest that niche differentiation plays a dominant role in microbial interactions, while habitat filtering also plays a role among certain clades of bacterial species.


Subject(s)
Bacteria , Microbial Interactions , Microbiota , Models, Biological , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Computational Biology , Genome, Bacterial/genetics , Genomics , Humans , Microbial Interactions/genetics , Microbial Interactions/physiology , Microbiota/genetics , Microbiota/physiology , Phylogeny
5.
Bioinformatics ; 36(Suppl_1): i219-i226, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32657391

ABSTRACT

MOTIVATION: The computational prediction of gene function is a key step in making full use of newly sequenced genomes. Function is generally predicted by transferring annotations from homologous genes or proteins for which experimental evidence exists. The 'ortholog conjecture' proposes that orthologous genes should be preferred when making such predictions, as they evolve functions more slowly than paralogous genes. Previous research has provided little support for the ortholog conjecture, though the incomplete nature of the data cast doubt on the conclusions. RESULTS: We use experimental annotations from over 40 000 proteins, drawn from over 80 000 publications, to revisit the ortholog conjecture in two pairs of species: (i) Homo sapiens and Mus musculus and (ii) Saccharomyces cerevisiae and Schizosaccharomyces pombe. By making a distinction between questions about the evolution of function versus questions about the prediction of function, we find strong evidence against the ortholog conjecture in the context of function prediction, though questions about the evolution of function remain difficult to address. In both pairs of species, we quantify the amount of information that would be ignored if paralogs are discarded, as well as the resulting loss in prediction accuracy. Taken as a whole, our results support the view that the types of homologs used for function transfer are largely irrelevant to the task of function prediction. Maximizing the amount of data used for this task, regardless of whether it comes from orthologs or paralogs, is most likely to lead to higher prediction accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/predragradivojac/oc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Proteins , Animals , Base Sequence , Evolution, Molecular , Humans , Mice , Proteins/genetics
6.
Hum Mutat ; 40(9): 1314-1320, 2019 09.
Article in English | MEDLINE | ID: mdl-31140652

ABSTRACT

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors in European populations do not translate to individuals of African descent because of the differences in allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of Genome Interpretation, participants were asked to predict VTE status in exome data from African American subjects. Participants were provided with 103 unlabeled exomes from patients treated with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had been treated for. Given the lack of training data, many participants opted to use unsupervised machine learning methods, clustering the exomes by variation in genes known to be associated with VTE. The best performing method using only VTE related genes achieved an area under the ROC curve of 0.65. Here, we discuss the range of methods used in the prediction of VTE from sequence data and explore some of the difficulties of conducting a challenge with known confounders. In addition, we show that an existing genetic risk score for VTE that was developed in European subjects works well in African Americans.


Subject(s)
Exome Sequencing/methods , Venous Thromboembolism/genetics , Warfarin/administration & dosage , Cluster Analysis , Computational Biology/methods , Congresses as Topic , Female , Genetic Predisposition to Disease , Humans , Male , ROC Curve , Unsupervised Machine Learning , Venous Thromboembolism/drug therapy , Warfarin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...