Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543507

ABSTRACT

Bioinvasions constitute both a direct and an indirect threat to ecosystems. Direct threats include pressures on local trophic chains, while indirect threats might take the form of an invasion of a microorganism alongside its host. The marine dinoflagellate Hematodinium perezi, parasitizing blue crabs (Callinectes sapidus), has a worldwide distribution alongside its host. In Greece, fluctuations in the blue crab population are attributed to overexploitation and the effects of climate change. The hypothesis of the present study was that blue crab population reductions cannot only be due to these factors, and that particular pathogens may also be responsible for the fluctuations. To investigate this hypothesis, both lethargic and healthy blue crab specimens were collected from three different fishing sites in order to assess the health status of this important species. Together with the lethargic responses, the hemolymph of the infested crabs presented a milky hue, indicating the first signs of parasitic infestation with H. perezi. The histopathological results and molecular identification demonstrated the effect of the presence of H. perezi in the internal organs and their important role in the mortality of blue crabs. Specifically, H. perezi, in three different tissues examined (heart, gills, hepatopancreas), affected the hemocytes of the species, resulting in alterations in tissue structure. Apart from this dinoflagellate parasite, the epibiotic peritrich ciliate Epistylis sp. was also identified, infecting the gills. This study represents the first detection of H. perezi in the eastern Mediterranean, demonstrating that this is the main causative agent of blue crab mortality on Greek coastlines.

2.
Foods ; 12(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37509904

ABSTRACT

A definitive screening design was used in order to evaluate the effects of starch, glycerol and montmorillonite (MMT) concentrations, as well as the drying temperature, drying tray type and starch species, on packaging film's functional properties. Optimization showed that in order to obtain films with the minimum possible thickness, the maximum elongation at break, the maximum tensile strength, as well as reduced water vapor permeability and low opacity, a combination of factors should be used as follows: 5.5% wt starch concentration, 30% wt glycerol concentration on a dry starch basis, 10.5% wt MMT concentration on a dry starch basis, 45 °C drying temperature, chickpea as the starch species and plexiglass as the drying tray type. Based on these results, starch films were prepared, and fresh minced meat was stored in them for 3 days. It was shown that the incorporation of MMT at 10.5% wt on a dry starch basis in the packaging films led to a decreased mesophilic and psychrotrophic bacteria growth factor compared to commercial packaging. When assessed for their biodegradability, the starch films disintegrated after 10 days of thermophilic incubation under simulated composting conditions. Finally, to prove their handling capability during industrial production, the starch films were rewound in a paper cylinder using an industrial-scale rewinding machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...