Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 163: 110164, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455467

ABSTRACT

The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.


Subject(s)
Fatty Acids , Polyesters , Oils , Biofuels , Fatty Acids, Unsaturated , Cooking , Esters
2.
JACS Au ; 1(11): 1949-1960, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34849510

ABSTRACT

Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.

3.
Adv Sci (Weinh) ; 8(2): 2002778, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33511014

ABSTRACT

Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.

4.
Z Naturforsch C J Biosci ; 74(3-4): 91-100, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30789828

ABSTRACT

Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.


Subject(s)
Lactones/chemistry , Norbornanes/chemistry , Oxidoreductases/chemistry , Polyesters/chemical synthesis , Terpenes/chemistry , Biocatalysis , Cyclization , Humans , Lactones/metabolism , Norbornanes/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Polyesters/metabolism , Polymerization , Prenylation , Terpenes/metabolism
5.
Chembiochem ; 20(13): 1664-1671, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30793830

ABSTRACT

Significantly increased production of biobased polymers is a prerequisite to replace petroleum-based materials towards reaching a circular bioeconomy. However, many renewable building blocks from wood and other plant material are not directly amenable for polymerization, due to their inert backbones and/or lack of functional group compatibility with the desired polymerization type. Based on a retro-biosynthetic analysis of polyesters, a chemoenzymatic route from (-)-α-pinene towards a verbanone-based lactone, which is further used in ring-opening polymerization, is presented. Generated pinene-derived polyesters showed elevated degradation and glass transition temperatures, compared with poly(ϵ-decalactone), which lacks a ring structure in its backbone. Semirational enzyme engineering of the cyclohexanone monooxygenase from Acinetobacter calcoaceticus enabled the biosynthesis of the key lactone intermediate for the targeted polyester. As a proof of principle, one enzyme variant identified from screening in a microtiter plate was used in biocatalytic upscaling, which afforded the bicyclic lactone in 39 % conversion in shake flask scale reactions.


Subject(s)
Bicyclic Monoterpenes/chemistry , Polyesters/chemical synthesis , Animals , Catalase/chemistry , Cattle , Escherichia coli/enzymology , Glucose 1-Dehydrogenase/chemistry , Mixed Function Oxygenases/chemistry , Polymerization
6.
Chem Phys Lipids ; 211: 37-43, 2018 03.
Article in English | MEDLINE | ID: mdl-29129569

ABSTRACT

In spite of the importance of the triglyceride aqueous interface for processes like emulsification, surfactant interactions and lipase activity, relatively little is known about this interface compared to that between alkanes and water. Here, the contact between triolein and water was investigated in terms of water inclusion in the oil phase and orientation of the molecules at the interface. Coarse grained models of triglycerides in contact with water were constructed and correlated with experimental results of the changes in thickness and refractive index, obtained using spectroscopic ellipsometry of spin-coated triolein films. The topography of the layer was revealed by atomic force microscopy. Dry triolein and a triolein sample after equilibration with water were also compared structurally using small-angle X-ray scattering. Additionally, the kinetics of adsorption/activity of three different variants of the Thermomyces lanuginosus lipase (TLL) were investigated. The results show that uptake of water in the triolein phase leads to increase in thickness of the layer. The observed increase of thickness was further enhanced by an active lipase but reduced when an inactive mutant of the enzyme was applied.


Subject(s)
Lipase/metabolism , Molecular Dynamics Simulation , Triolein/chemistry , Water/chemistry , Ascomycota/enzymology , Scattering, Small Angle , Spectrum Analysis , Triolein/metabolism , Water/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...