Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826412

ABSTRACT

Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in treatment of aspergillosis with this drug class acting by inhibiting a key step in biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologues consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA-seq, we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced.

2.
Hepatol Commun ; 7(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37820274

ABSTRACT

BACKGROUND: In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet, ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which are largely unknown. METHODS: Here, we combined in silico machine learning, in vivo liver-specific deletion of the master regulator of hepatocyte differentiation HNF4α, and in vitro manipulation of hepatocyte differentiation state to determine how the UPR regulates hepatocyte identity and toward what end. RESULTS: Machine learning identified a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. CONCLUSIONS: Together, our findings suggest that the UPR regulates hepatocyte identity through HNF4α to protect ER homeostasis even at the expense of liver function.


Subject(s)
Endoplasmic Reticulum , Gene Regulatory Networks , Gene Regulatory Networks/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Hepatocytes/metabolism , Liver/metabolism
3.
Nat Commun ; 14(1): 6587, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852972

ABSTRACT

Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Cryptococcus neoformans/metabolism , Saccharomyces cerevisiae/metabolism , Phospholipids/metabolism , Carbon Dioxide/metabolism , Phosphatidylserines/metabolism , Cryptococcosis/microbiology , ATP-Binding Cassette Transporters/metabolism
4.
mBio ; 14(5): e0152123, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37737633

ABSTRACT

IMPORTANCE: Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.


Subject(s)
Candida albicans , Transcription Factors , Humans , Transcription Factors/genetics , Alleles , Symbiosis , Biofilms , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/metabolism
5.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37398495

ABSTRACT

Candida albicans is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of C. albicans . The C. albicans reference strain SC5314 is a ROB1 heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform. An analysis of 224 sequenced C. albicans genomes indicates that SC5314 is the only ROB1 heterozygote documented to date and that the dominant allele contains a proline at position 946. Remarkably, the ROB1 alleles are functionally distinct and the rare ROB1 946S allele supports increased filamentation in vitro and increased biofilm formation in vitro and in vivo, suggesting it is a phenotypic gain-of-function allele. SC5314 is amongst the most highly filamentous and invasive strains characterized to date. Introduction of the ROB1 946S allele into a poorly filamenting clinical isolate increases filamentation and conversion of an SC5314 laboratory strain to a ROB1 946S homozygote increases in vitro filamentation and biofilm formation. In a mouse model of oropharyngeal infection, the predominant ROB1 946P allele establishes a commensal state while the ROB1 946S phenocopies the parent strain and invades into the mucosae. These observations provide an explanation for the distinct phenotypes of SC5314 and highlight the role of heterozygosity as a driver of C. albicans phenotypic heterogeneity. Importance: Candida albicans is a commensal fungus that colonizes human oral cavity and gastrointestinal tracts but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogenous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These finding explain, in part, the outlier phenotype of the reference strain and highlight the role of heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.

6.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37523774

ABSTRACT

Transcriptional regulation of azole resistance in the filamentous fungus Aspergillus fumigatus is a key step in development of this problematic clinical phenotype. We and others have previously described a C2H2-containing transcription factor called FfmA that is required for normal levels of voriconazole susceptibility. Null alleles of ffmA exhibit a strongly compromised growth rate even in the absence of any external stress. Here, we employ an acutely repressible doxycycline-off form of ffmA to rapidly deplete FfmA protein from the cell. Using this approach, we carried out RNA-seq analyses to probe the transcriptome cells acutely deprived of FfmA. A total of 2,000 genes were differentially expressed upon acute depletion of FfmA, illustrating the broad transcriptomic effect of this factor. Interestingly, the transcriptome changes observed upon this acute depletion of FfmA expression only shared limited overlap with those found in an ffmAΔ null strain analyzed by others. Chromatin immunoprecipitation coupled with high throughput DNA sequencing analysis (ChIP-seq) identified 530 genes that were bound by FfmA. More than 300 of these genes were also bound by AtrR, a transcription factor important in azole drug resistance, demonstrating striking regulatory overlap with FfmA. However, while AtrR is an upstream activation protein with known specificity, our data suggest that FfmA is a chromatin-associated factor that binds DNA in a manner dependent on other factors. We provide evidence that AtrR and FfmA interact in the cell and show reciprocal expression modulation. Interaction of AtrR and FfmA is required for normal gene expression in A. fumigatus.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Antifungal Agents/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Fungi/genetics , Azoles/metabolism , Azoles/pharmacology , Transcriptome , Fungal Proteins/genetics , Fungal Proteins/metabolism , Drug Resistance, Fungal/genetics
7.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333080

ABSTRACT

Transcriptional regulation of azole resistance in the filamentous fungus Aspergillus fumigatus is a key step in development of this problematic clinical phenotype. We and others have previously described a C2H2-containing transcription factor called FfmA that is required for normal levels of voriconazole susceptibility and expression of an ATP-binding cassette transporter gene called abcG1 . Null alleles of ffmA exhibit a strongly compromised growth rate even in the absence of any external stress. Here we employ an acutely repressible doxycycline-off form of ffmA to rapidly deplete FfmA protein from the cell. Using this approach, we carried out RNA-seq analyses to probe the transcriptome of A. fumigatus cells that have been deprived of normal FfmA levels. We found that 2000 genes were differentially expressed upon depletion of FfmA, consistent with the wide-ranging effect of this factor on gene regulation. Chromatin immunoprecipitation coupled with high throughput DNA sequencing analysis (ChIP-seq) identified 530 genes that were bound by FfmA using two different antibodies for immunoprecipitation. More than 300 of these genes were also bound by AtrR demonstrating the striking regulatory overlap with FfmA. However, while AtrR is clearly an upstream activation protein with clear sequence specificity, our data suggest that FfmA is a chromatin-associated factor that may bind to DNA in a manner dependent on other factors. We provide evidence that AtrR and FfmA interact in the cell and can influence one another's expression. This interaction of AtrR and FfmA is required for normal azole resistance in A. fumigatus .

8.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798396

ABSTRACT

In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which is largely unknown. Here, we used unsupervised machine learning to identify a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4 α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. Several pathways potentially link HNF4α to ER stress sensitivity, including control of expression of the tunicamycin transporter MFSD2A; modulation of IRE1/XBP1 signaling; and regulation of Pyruvate Dehydrogenase. Together, these findings suggest that HNF4α activity is linked to hepatic ER homeostasis through multiple mechanisms.

9.
mSphere ; 6(6): e0083021, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34935446

ABSTRACT

Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss-of-function mutations in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3ß, 6α-diol, relative to the upc2AΔ mutant. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata. IMPORTANCE Candida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol (ERG) biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of ERG genes, additional positive regulators of this pathway must exist.


Subject(s)
Candida glabrata/drug effects , Ergosterol/biosynthesis , Fluconazole/pharmacology , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Antifungal Agents/pharmacology , Candida glabrata/genetics , Candida glabrata/metabolism , Ergosterol/genetics , Gene Expression Regulation, Fungal , Methyltransferases/genetics , Methyltransferases/metabolism , Mutation , Oxidoreductases/genetics , Oxidoreductases/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/metabolism
10.
PLoS Genet ; 17(9): e1009582, 2021 09.
Article in English | MEDLINE | ID: mdl-34591857

ABSTRACT

The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis.


Subject(s)
Antifungal Agents/pharmacology , Candida glabrata/metabolism , Drug Resistance, Fungal/genetics , Transcription Factors/genetics , Candida glabrata/drug effects , Candida glabrata/genetics , Chromatin Immunoprecipitation , Fluconazole/pharmacology , Gain of Function Mutation , Gene Expression Regulation, Fungal/drug effects , Gene Regulatory Networks , Genes, Fungal , Mutation , Transcription, Genetic/genetics , Transcriptome
11.
mBio ; 11(4)2020 08 18.
Article in English | MEDLINE | ID: mdl-32817109

ABSTRACT

The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans The RAM pathway's two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicansIMPORTANCE The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2.


Subject(s)
Candida albicans/enzymology , Candida albicans/genetics , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Hyphae/growth & development , Protein Serine-Threonine Kinases/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
12.
Cancers (Basel) ; 11(9)2019 Sep 08.
Article in English | MEDLINE | ID: mdl-31500347

ABSTRACT

SOX2 and OCT4 are key regulators of embryonic stem cell pluripotency. They are overexpressed in prostate cancers and have been associated with cancer stem cell (CSC) properties. However, reliable tools for detecting and targeting SOX2/OCT4-overexpressing cells are lacking, limiting our understanding of their roles in prostate cancer initiation, progression, and therapeutic resistance. Here, we show that a fluorescent reporter called SORE6 can identify SOX2/OCT4-overexpressing prostate cancer cells. Among tumor cells, the SORE6 reporter identified a small fraction with CSC hallmarks: rapid self-renewal, the capability to form tumors and metastasize, and resistance to chemotherapies. Transcriptome and biochemical analyses identified PI3K/AKT signaling as critical for maintaining the SORE6+ population. Moreover, a SORE6-driven herpes simplex virus thymidine kinase (TK) expression construct could selectively ablate SORE6+ cells in tumors, blocking tumor initiation and progression, and sensitizing tumors to chemotherapy. This study demonstrates a key role of SOX2/OCT4-associated prostate cancer stem cells in tumor development and therapeutic resistance, and identifies the SORE6 reporter system as a useful tool for characterizing CSCs functions in a native tumor microenvironment.

13.
SoftwareX ; 9: 154-160, 2019.
Article in English | MEDLINE | ID: mdl-31304228

ABSTRACT

Genetic screens using shRNA, CRISPR, or cDNA libraries rely on adequately transferring the library into cells for further assay. These libraries can have many different elements and each element can be present at different copy numbers within a given pooled library. Calculating how many recipient cells are needed to adequately sample all or most of the different elements within a library is important, especially if one wants to compare the outcomes of different genetic screens that rely on accurately reproducing the starting population of library-containing cells. Here we present a simple application that starts with a list of library elements and their abundance and calculates the minimum sampling number to achieve full transfer of the library to an acceptor cell population to a user-specified level of probability. Users can adjust several input parameters including designating a subpopulation over which the calculation is made. Finally, the program performs a series of Monte Carlo simulations of a user-specified number of picks to produce an empirically determined distribution of each library element.

14.
Sci Rep ; 9(1): 1200, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718715

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC50 cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of 3H-monensin compared to resistant cells.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Monensin/pharmacology , Apoptosis/drug effects , Biological Transport , Cell Cycle Checkpoints/drug effects , Cell Line , Drug Evaluation, Preclinical/methods , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Mitochondria/drug effects , Molecular Imaging/methods , Monensin/metabolism , Reactive Oxygen Species/metabolism
15.
J Vis Exp ; (136)2018 06 28.
Article in English | MEDLINE | ID: mdl-30010636

ABSTRACT

We have adapted the yeast 2-hybrid assay to simultaneously uncover dozens of transient and static protein interactions within a single screen utilizing high-throughput short-read DNA sequencing. The resulting sequence datasets can not only track what genes in a population that are enriched during selection for positive yeast 2-hybrid interactions, but also give detailed information about the relevant subdomains of proteins sufficient for interaction. Here, we describe a full suite of stand-alone software programs that allow non-experts to perform all the bioinformatics and statistical steps to process and analyze DNA sequence fastq files from a batch yeast 2-hybrid assay. The processing steps covered by these software include: 1) mapping and counting sequence reads corresponding to each candidate protein encoded within a yeast 2-hybrid prey library; 2) a statistical analysis program that evaluates the enrichment profiles; and 3) tools to examine the translational frame and position within the coding region of each enriched plasmid that encodes the interacting proteins of interest.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Informatics/methods , Protein Interaction Mapping/methods , Saccharomyces cerevisiae/genetics , Two-Hybrid System Techniques/standards , Animals
16.
J Vis Exp ; (136)2018 06 06.
Article in English | MEDLINE | ID: mdl-29939176

ABSTRACT

Screening for protein-protein interactions using the yeast 2-hybrid assay has long been an effective tool, but its use has largely been limited to the discovery of high-affinity interactors that are highly enriched in the library of interacting candidates. In a traditional format, the yeast 2-hybrid assay can yield too many colonies to analyze when conducted at low stringency where low affinity interactors might be found. Moreover, without a comprehensive and complete interrogation of the same library against different bait plasmids, a comparative analysis cannot be achieved. Although some of these problems can be addressed using arrayed prey libraries, the cost and infrastructure required to operate such screens can be prohibitive. As an alternative, we have adapted the yeast 2-hybrid assay to simultaneously uncover dozens of transient and static protein interactions within a single screen utilizing a strategy termed DEEPN (Dynamic Enrichment for Evaluation of Protein Networks), which incorporates high-throughput DNA sequencing and computation to follow the evolution of a population of plasmids that encode interacting partners. Here, we describe customized reagents and protocols that allow a DEEPN screen to be executed easily and cost-effectively.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Protein Interaction Mapping/methods , Two-Hybrid System Techniques/statistics & numerical data
17.
Cell Cycle ; 14(23): 3673-8, 2015.
Article in English | MEDLINE | ID: mdl-26505929

ABSTRACT

Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.


Subject(s)
GPI-Linked Proteins/metabolism , Multivesicular Bodies/metabolism , Saccharomyces cerevisiae Proteins/physiology , Tetraspanins/physiology , Models, Biological , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Tetraspanins/chemistry , Tetraspanins/metabolism
18.
PLoS One ; 9(5): e96647, 2014.
Article in English | MEDLINE | ID: mdl-24792215

ABSTRACT

Juvenile Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL) is a devastating neurodegenerative disease caused by mutations in CLN3, a protein of undefined function. Cell lines derived from patients or mice with CLN3 deficiency have impairments in actin-regulated processes such as endocytosis, autophagy, vesicular trafficking, and cell migration. Here we demonstrate the small GTPase Cdc42 is misregulated in the absence of CLN3, and thus may be a common link to multiple cellular defects. We discover that active Cdc42 (Cdc42-GTP) is elevated in endothelial cells from CLN3 deficient mouse brain, and correlates with enhanced PAK-1 phosphorylation, LIMK membrane recruitment, and altered actin-driven events. We also demonstrate dramatically reduced plasma membrane recruitment of the Cdc42 GTPase activating protein, ARHGAP21. In line with this, GTP-loaded ARF1, an effector of ARHGAP21 recruitment, is depressed. Together these data implicate misregulated ARF1-Cdc42 signaling as a central defect in JNCL cells, which in-turn impairs various cell functions. Furthermore our findings support concerted action of ARF1, ARHGAP21, and Cdc42 to regulate fluid phase endocytosis in mammalian cells. The ARF1-Cdc42 pathway presents a promising new avenue for JNCL therapeutic development.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Actins/metabolism , Gene Deletion , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , Animals , Brain/cytology , Brain/metabolism , Brain/pathology , Cell Movement , Cells, Cultured , Endocytosis , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...