Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Green Chem ; 25(5): 1809-1822, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-37810198

ABSTRACT

The engineered structures and active sites of enzyme catalysts give rise to high catalytic activity and selectivity toward desired reactions. We have employed a biomass-derived difuran compound to append N-substituted maleimides with amino acid (glutamic acid) substitution by Diels-Alder reaction to mimic the chemical functional groups that comprise the active site channels in enzyme catalysts. The difunctionality of the biomass-derived difuran allows production of Diels-Alder adducts by appending two amino acid moieties to form a difunctional organocatalyst. The catalytic activity of the organocatalyst can be improved by immobilizing the organocatalyst on solid supporting materials. Accordingly, the structures of these immobilized organocatalysts can be engineered to mimic enzymatic active sites and to control the interaction between reactants, products, and transition states of catalytic reactions. Lactose hydrolysis was carried out to provide an example of industrial application of this approach to design and fabricate new supported organocatalysts as artificial enzymes.

2.
J Am Chem Soc ; 145(32): 17515-17526, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534994

ABSTRACT

Molecular oxygen is the quintessential oxidant for organic chemical synthesis, but many challenges continue to limit its utility and breadth of applications. Extensive historical research has focused on overcoming kinetic challenges presented by the ground-state triplet electronic structure of O2 and the various reactivity and selectivity challenges associated with reactive oxygen species derived from O2 reduction. This Perspective will analyze thermodynamic principles underlying catalytic aerobic oxidation reactions, borrowing concepts from the study of the oxygen reduction reaction (ORR) in fuel cells. This analysis is especially important for "oxidase"-type liquid-phase catalytic aerobic oxidation reactions, which proceed by a mechanism that couples two sequential redox half-reactions: (1) substrate oxidation and (2) oxygen reduction, typically affording H2O2 or H2O. The catalysts for these reactions feature redox potentials that lie between the potentials associated with the substrate oxidation and oxygen reduction reactions, and changes in the catalyst potential lead to variations in effective overpotentials for the two half reactions. Catalysts that operate at low ORR overpotential retain a more thermodynamic driving force for the substrate oxidation step, enabling O2 to be used in more challenging oxidations. While catalysts that operate at high ORR overpotential have less driving force available for substrate oxidation, they often exhibit different or improved chemoselectivity relative to the high-potential catalysts. The concepts are elaborated in a series of case studies to highlight their implications for chemical synthesis. Examples include comparisons of (a) NOx/oxoammonium and Cu/nitroxyl catalysts, (b) high-potential quinones and amine oxidase biomimetic quinones, and (c) Pd aerobic oxidation catalysts with or without NOx cocatalysts. In addition, we show how the reductive activation of O2 provides a means to access potentials not accessible with conventional oxidase-type mechanisms. Overall, this analysis highlights the central role of catalyst overpotential in guiding the development of aerobic oxidation reactions.

3.
Green Chem ; 25(14): 5416-5427, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-38223356

ABSTRACT

A biomass-derived difuran compound, denoted as HAH (HMF-Acetone-HMF), synthesized by aldol-condensation of 5-hydroxyfurfural (HMF) and acetone, can be partially hydrogenated to provide an electron-rich difuran compound (PHAH) for Diels-Alder reactions with maleimide derivatives. The nitrogen (N) site in the maleimide can be substituted by imidation with amine-containing compounds to control the hydrophobicity of the maleimide moiety in adducts of furans and maleimide by Diels-Alder reaction, denoted as norcantharimides (Diels-Alder adducts). The structural effects on the toxicity of various biomass-derived small molecules synthesized in this manner to regulate biological processes, defined as low molecular weight (≤ 1000 g/mol) organic compounds, were investigated against diverse microbial and mammalian cell types. The biological toxicity increased when hydrophobic N-substitutions and C=C bonds were introduced into the molecular structure. Among the synthesized norcantharamide derivatives, some compounds demonstrated pH-dependent toxicities against specific cell types. Reaction kinetics analyses of the norcantharimides in biological conditions suggest that this pH-dependent toxicity of norcantharimides could arise from retro Diels-Alder reactions in the presence of a Brϕnsted acid that catalyzes the release of an N-substituted maleimide, which has higher toxicity against fungal cells than the toxicity of the Diels-Alder adduct. These synthetic approaches can be used to design biologically-active small molecules that exhibit selective toxicity against various cell types (e.g., fungal, cancer cells) and provide a sustainable platform for production of prodrugs that could actively or passively affect the viability of infectious cells.

4.
J Org Chem ; 86(22): 15875-15885, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34609137

ABSTRACT

Redox reactions are ubiquitous in organic synthesis and intrinsic to organic electrosynthesis. The language and concepts used to describe reactions in these domains are sufficiently different to create barriers that hinder broader adoption and understanding of electrochemical methods. To bridge these gaps, this Synopsis compares chemical and electrochemical redox reactions, including concepts of free energy, voltage, kinetic barriers, and overpotential. This discussion is intended to increase the accessibility of electrochemistry for organic chemists lacking formal training in this area.


Subject(s)
Chemistry, Organic , Intuition , Electrochemical Techniques , Electrochemistry , Oxidation-Reduction
5.
Angew Chem Int Ed Engl ; 60(43): 23182-23186, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34399005

ABSTRACT

The 1,4-diacyloxylation of 1,3-cyclohexadiene (CHD) affords valuable stereochemically defined scaffolds for natural product and pharmaceutical synthesis. Existing cis-selective diacyloxylation protocols require superstoichiometric quantities of benzoquinone (BQ) or MnO2 , which limit process sustainability and large-scale application. In this report, reaction development and mechanistic studies are described that overcome these limitations by pairing catalytic BQ with tert-butyl hydroperoxide as the stoichiometric oxidant. Catalytic quantities of bromide enable a switch from trans to cis diastereoselectivity. A catalyst with a 1:2 Pd:Br ratio supports high cis selectivity while retaining good rate and product yield. Further studies enable replacement of BQ with hydroquinone (HQ) as a source of cocatalyst, avoiding the handling of volatile and toxic BQ in large-scale applications.


Subject(s)
Acetates/chemistry , Benzoates/chemical synthesis , Cyclohexenes/chemical synthesis , Hydroquinones/chemistry , Organometallic Compounds/chemistry , Catalysis , Palladium/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...