Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 10: 277, 2019.
Article in English | MEDLINE | ID: mdl-31133890

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing is a co-/posttranscriptional modification of double-stranded RNA, catalyzed by the adenosine deaminase acting on RNA (ADAR) family of enzymes, which results in recognition of inosine as guanosine by translational and splicing machinery causing potential recoding events in amino acid sequences. A-to-I editing is prominent within brain-specific transcripts, and dysregulation of editing at several well-studied loci (e.g., Gria2, Htr2c) has been implicated in acute and chronic stress in rodents as well as neurological (e.g., Alzheimer's) and psychopathological disorders such as schizophrenia and major depressive disorder. However, only a small fraction of recoding sites has been investigated within the brain following stress, and our understanding of the role of RNA editing in transcriptome regulation following environmental stimuli remains poorly understood. Thus, we aimed to investigate A-to-I editing at hundreds of loci following chronic social defeat stress (CSDS) in mice within corticolimbic regions responsive to chronic stress regulation. Adult male mice were subjected to CSDS or control conditions for 21 days and dynamic regulation of A-to-I editing was investigated 2 and 8 days following the final defeat within both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). Employing a targeted resequencing approach, which utilizes microfluidics-based multiplex polymerase chain reaction (PCR) coupled with next-generation sequencing, we analyzed A-to-I editing at ∼100 high-confidence editing sites within the mouse brain. CSDS resulted in acute regulation of transcripts encoding several ADAR enzymes, which normalized 8 days following the final defeat and was specific for susceptible mice. In contrast, sequencing analysis revealed modest and dynamic regulation of A-to-I editing within numerous transcripts in both the mPFC and BLA of resilient and susceptible mice at both 2 and 8 days following CSDS with minimal overlap between regions and time points. Editing within the Htr2c transcript and relative abundance of Htr2c messenger RNA (mRNA)variants were also observed within the BLA of susceptible mice 2 days following CSDS. These results indicate dynamic RNA editing within discrete brain regions following CSDS in mice, further implicating A-to-I editing as a stress-sensitive molecular mechanism within the brain of potential relevance to resiliency and susceptibility to CSDS.

2.
Psychol Sci ; 27(12): 1620-1631, 2016 12.
Article in English | MEDLINE | ID: mdl-27815519

ABSTRACT

In the current study, we investigated windows for enhanced learning of cognitive skills during adolescence. Six hundred thirty-three participants (11-33 years old) were divided into four age groups, and each participant was randomly allocated to one of three training groups. Each training group completed up to 20 days of online training in numerosity discrimination (i.e., discriminating small from large numbers of objects), relational reasoning (i.e., detecting abstract relationships between groups of items), or face perception (i.e., identifying differences in faces). Training yielded some improvement in performance on the numerosity-discrimination task, but only in older adolescents or adults. In contrast, training in relational reasoning improved performance on that task in all age groups, but training benefits were greater for people in late adolescence and adulthood than for people earlier in adolescence. Training did not increase performance on the face-perception task for any age group. Our findings suggest that for certain cognitive skills, training during late adolescence and adulthood yields greater improvement than training earlier in adolescence, which highlights the relevance of this late developmental stage for education.


Subject(s)
Cognition/physiology , Facial Recognition/physiology , Learning/physiology , Adolescent , Child , Education , Female , Humans , Male , Thinking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...