Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2315598121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502694

ABSTRACT

Most macroscopic magnetic phenomena (including magnetic hysteresis) are typically understood classically. Here, we examine the dynamics of a uniaxial rare-earth ferromagnet deep within the quantum regime, so that domain wall motion, and the associated hysteresis, is initiated by quantum nucleation, which then grows into large-scale domain wall motion, which is observable as an unusual form of Barkhausen noise. We observe noncritical behavior in the resulting avalanche dynamics that only can be explained by going beyond traditional renormalization group methods or classical domain wall models. We find that this "quantum Barkhausen noise" exhibits two distinct mechanisms for domain wall movement, each of which is quantum-mechanical, but with very different dependences on an external magnetic field applied transverse to the spin (Ising) axis. These observations can be understood in terms of the correlated motion of pairs of domain walls, nucleated by cotunneling of plaquettes (sections of domain wall), with plaquette pairs correlated by dipolar interactions; this correlation is suppressed by the transverse field. Similar macroscopic correlations may be expected to appear in the hysteresis of other systems with long-range interactions.

2.
Phys Rev Lett ; 127(20): 207202, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860035

ABSTRACT

We directly measure the low energy excitation modes of the quantum Ising magnet LiHoF_{4} using microwave spectroscopy. Instead of a single electronic mode, we find a set of collective electronuclear modes, in which the spin-1/2 Ising electronic spins hybridize with the bath of spin-7/2 Ho nuclear spins. The lowest-lying electronuclear mode softens at the approach to the quantum critical point, even in the presence of disorder. This softening is rapidly quenched by a longitudinal magnetic field. Similar electronuclear structures should exist in other spin-based quantum Ising systems.

3.
Philos Trans A Math Phys Eng Sci ; 370(1975): 4429-53, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22908335

ABSTRACT

We review the difference between standard environmental decoherence and 'intrinsic decoherence', which is taken to be an ineluctable process of Nature. Environmental decoherence is typically modelled by spin bath or oscillator modes-we review some of the unanswered questions not captured by these models, and also the application of them to experiments. Finally, a sketch is given of a new theoretical approach to intrinsic decoherence, and this scheme is applied to the discussion of gravitational decoherence.

4.
Phys Rev Lett ; 108(18): 184501, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681080

ABSTRACT

We derive a fully quantum-mechanical equation of motion for a vortex in a 2-dimensional Bose superfluid in the temperature regime where the normal fluid density ρ(n)(T) is small. The coupling between the vortex "zero mode" and the quasiparticles has no term linear in the quasiparticle variables--the lowest-order coupling is quadratic. We find that as a function of the dimensionless frequency Ω=ℏΩ/k(B)T, the standard Hall-Vinen-Iordanskii equations are valid when Ω≪1 (the "classical regime"), but elsewhere, the equations of motion become highly retarded, with significant experimental implications when Ω≳1.

5.
Nature ; 476(7358): 76-9, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21775988

ABSTRACT

Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics, in which the breakdown of quantum theory would appear as an 'intrinsic' decoherence, mimicking the more familiar environmental decoherence processes. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe(8) molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49 × 10(6); our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ∼6 × 10(7), by optimizing the temperature, magnetic field and nuclear isotopic concentrations.

6.
Phys Rev Lett ; 105(26): 266605, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231696

ABSTRACT

We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ, in all models where this coupling depends only on phonon momentum q. In the SSH model the coupling also depends on the electron momentum k; we find it has a sharp transition, at a critical coupling strength λ(c), between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λ(c). This result is representative of all polarons with coupling depending on k and q, and will have important experimental consequences (e.g., in angle-resolved photoemission spectroscopy and conductivity experiments).

7.
Phys Rev Lett ; 103(1): 017202, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659173

ABSTRACT

We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.

8.
Phys Rev Lett ; 100(25): 257202, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18643698

ABSTRACT

We investigate the stability of the recently discovered room-temperature Bose-Einstein condensate (BEC) of magnons in yttrium iron garnet films. We show that magnon-magnon interactions depend strongly on the external field orientation, and that the BEC in current experiments is actually metastable-it only survives because of finite-size effects, and because the BEC density is very low. On the other hand a strong field applied perpendicular to the sample plane leads to a repulsive magnon-magnon interaction; we predict that a high-density room-temperature magnon BEC should then form in this perpendicular field geometry.

9.
Phys Rev Lett ; 97(20): 207206, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155713

ABSTRACT

Experiments involving phase coherent dynamics of networks of spins, such as echo experiments, will only work if decoherence can be suppressed. We show here, by analyzing the particular example of a crystalline network of Fe8 molecules, that most decoherence typically comes from pairwise interactions (particularly dipolar interactions) between the spins, which cause "correlated errors." However, at very low T these are strongly suppressed. These results have important implications for the design of quantum information processing systems using electronic spins.

10.
Phys Rev Lett ; 95(26): 267208, 2005 Dec 31.
Article in English | MEDLINE | ID: mdl-16486398

ABSTRACT

We consider the quantum magnet at LiHo(x)Y(1-x)F(4) at x = 0.167. Experimentally the spin glass to paramagnet transition in this system was studied as a function of the transverse magnetic field and temperature, showing peculiar features: for example, (i) the spin glass order is destroyed much faster by thermal fluctuations than by the transverse field; and (ii) the cusp in the nonlinear susceptibility signaling the glass state decreases in size at lower temperature. Here we show that the hyperfine interactions of the Ho atom must dominate in this system, and that along with the transverse inter-Ho dipolar interactions they dictate the structure of the phase diagram. The experimental observations are shown to be natural consequences of this.

11.
Phys Rev Lett ; 92(11): 119701; author reply 119702, 2004 Mar 19.
Article in English | MEDLINE | ID: mdl-15089185
SELECTION OF CITATIONS
SEARCH DETAIL
...