Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Forum Infect Dis ; 11(5): ofae192, 2024 May.
Article in English | MEDLINE | ID: mdl-38680614

ABSTRACT

Background: Human adenoviruses (HAdVs) can cause outbreaks of flu-like illness in university settings. Most infections in healthy young adults are mild; severe illnesses rarely occur. In Fall 2022, an adenovirus outbreak was identified in university students. Methods: HAdV cases were defined as university students 17-26 years old who presented to the University Health Service or nearby emergency department with flu-like symptoms (eg, fever, cough, headache, myalgia, nausea) and had confirmed adenovirus infections by polymerase chain reaction (PCR). Demographic and clinical characteristics were abstracted from electronic medical records; clinical severity was categorized as mild, moderate, severe, or critical. We performed contact investigations among critical cases. A subset of specimens was sequenced to confirm the HAdV type. Results: From 28 September 2022 to 30 January 2023, 90 PCR-confirmed cases were identified (51% female; mean age, 19.6 years). Most cases (88.9%) had mild illness. Seven cases required hospitalization, including 2 critical cases that required intensive care. Contact investigation identified 44 close contacts; 6 (14%) were confirmed HAdV cases and 8 (18%) reported symptoms but never sought care. All typed HAdV-positive specimens (n = 36) were type 4. Conclusions: While most students with confirmed HAdV had mild illness, 7 otherwise healthy students had severe or critical illness. Between the relatively high number of hospitalizations and proportion of close contacts with symptoms who did not seek care, the true number of HAdV cases was likely higher. Our findings illustrate the need to consider a wide range of pathogens, even when other viruses are known to be circulating.

2.
Influenza Other Respir Viruses ; 17(5): e13151, 2023 05.
Article in English | MEDLINE | ID: mdl-37246148

ABSTRACT

BACKGROUND: Knowledge of the specific dynamics of influenza introduction and spread in university settings is limited. METHODS: Persons with acute respiratory illness symptoms received influenza testing by molecular assay during October 6-November 23, 2022. Viral sequencing and phylogenetic analysis were conducted on nasal swab samples from case-patients. Case-control analysis of a voluntary survey of persons tested was used to identify factors associated with influenza; logistic regression was conducted to calculate odds ratios and 95% CIs. A subset of case-patients tested during the first month of the outbreak was interviewed to identify sources of introduction and early spread. RESULTS: Among 3268 persons tested, 788 (24.1%) tested positive for influenza; 744 (22.8%) were included in the survey analysis. All 380 sequenced specimens were influenza A (H3N2) virus clade 3C.2a1b.2a.2, suggesting rapid transmission. Influenza (OR [95% CI]) was associated with indoor congregate dining (1.43 [1.002-2.03]), attending large gatherings indoors (1.83 [1.26-2.66]) or outdoors (2.33 [1.64-3.31]), and varied by residence type (apartment with ≥1 roommate: 2.93 [1.21-7.11], residence hall room alone: 4.18 [1.31-13.31], or with roommate: 6.09 [2.46-15.06], or fraternity/sorority house: 15.13 [4.30-53.21], all compared with single-dwelling apartment). Odds of influenza were lower among persons who left campus for ≥1 day during the week before their influenza test (0.49 [0.32-0.75]). Almost all early cases reported attending large events. CONCLUSIONS: Congregate living and activity settings on university campuses can lead to rapid spread of influenza following introduction. Isolating following a positive influenza test or administering antiviral medications to exposed persons may help mitigate outbreaks.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Phylogeny , Universities , Risk Factors
3.
JCI Insight ; 1(6)2016 May 05.
Article in English | MEDLINE | ID: mdl-27182557

ABSTRACT

The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...