Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 181(16): 2851-2868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657956

ABSTRACT

BACKGROUND AND PURPOSE: The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH: To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS: Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION: The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.


Subject(s)
Acetaminophen , Benzoquinones , Cysteine , Imines , Cysteine/metabolism , Acetaminophen/pharmacology , Benzoquinones/pharmacology , Benzoquinones/metabolism , Animals , Imines/pharmacology , Imines/chemistry , Imines/metabolism , Neurons/drug effects , Neurons/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Humans , Amino Acid Motifs , Analgesics, Non-Narcotic/pharmacology , HEK293 Cells , Rats
2.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614094

ABSTRACT

The mechanism of acetaminophen (APAP) analgesia is at least partially unknown. Previously, we showed that the APAP metabolite N-acetyl-p-benzoquinone imine (NAPQI) activated Kv7 channels in neurons in vitro, and this activation of Kv7 channels dampened neuronal firing. Here, the effect of the Kv7 channel blocker XE991 on APAP-induced analgesia was investigated in vivo. APAP had no effect on naive animals. Induction of inflammation with λ-carrageenan lowered mechanical and thermal thresholds. Systemic treatment with APAP reduced mechanical hyperalgesia, and co-application of XE991 reduced APAP's analgesic effect on mechanical pain. In a second experiment, the analgesic effect of systemic APAP was not antagonized by intrathecal XE991 application. Analysis of liver samples revealed APAP and glutathione-coupled APAP indicative of metabolization. However, there were no relevant levels of these metabolites in cerebrospinal fluid, suggesting no relevant APAP metabolite formation in the CNS. In summary, the results support an analgesic action of APAP by activating Kv7 channels at a peripheral site through formation of the metabolite NAPQI.


Subject(s)
Acetaminophen , Analgesics, Non-Narcotic , Animals , Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Imines/pharmacology , Analgesics/pharmacology , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...