Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 33(41)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33662946

ABSTRACT

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.

2.
Phys Rev Lett ; 121(13): 137203, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312103

ABSTRACT

We report dissipative magnon-photon coupling caused by the cavity Lenz effect, where the magnons in a magnet induce a rf current in the cavity, leading to a cavity backaction that impedes the magnetization dynamics. This effect is revealed in our experiment as level attraction with a coalescence of hybridized magnon-photon modes, which is distinctly different from level repulsion with mode anticrossing caused by coherent magnon-photon coupling. We develop a method to control the interpolation of coherent and dissipative magnon-photon coupling, and observe a matching condition where the two effects cancel. Our work sheds light on the so-far hidden side of magnon-photon coupling, opening a new avenue for controlling and utilizing light-matter interactions.

3.
Sci Rep ; 7(1): 11064, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894134

ABSTRACT

A technique is presented whereby the performance of a microwave device is evaluated by mapping local field distributions using Lorentz transmission electron microscopy (L-TEM). We demonstrate the method by measuring the polarisation state of the electromagnetic fields produced by a microstrip waveguide as a function of its gigahertz operating frequency. The forward and backward propagating electromagnetic fields produced by the waveguide, in a specimen-free experiment, exert Lorentz forces on the propagating electron beam. Importantly, in addition to the mapping of dynamic fields, this novel method allows detection of effects of microwave fields on specimens, such as observing ferromagnetic materials at resonance.

4.
Phys Rev Lett ; 117(8): 087202, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27588877

ABSTRACT

Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.

5.
Opt Express ; 22(23): 28467-78, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402089

ABSTRACT

Recent studies on surface reflection illustrate how light beams can be laterally shifted from the position predicted by geometrical optics, the so called Goos-Hänchen effect. In antiferromagnets this shifts can be controlled with an external magnetic field. We show that a configuration in which spins cant in response to applied magnetic fields enhance possibilities of field controlled shifts. Moreover, we show that nonreciprocal displacements are possible, for both oblique and normal incidence, due to inherent nonreciprocity of the polariton phase with respect to the propagation direction. In the absence of an external field, reciprocal displacements occur.


Subject(s)
Optical Phenomena , Optics and Photonics/methods , Magnetic Fields
6.
J Phys Condens Matter ; 25(36): 363201, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23948652

ABSTRACT

Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 µm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.

7.
Phys Rev Lett ; 109(3): 037203, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861890

ABSTRACT

Quenched disorder affects how nonequilibrium systems respond to driving. In the context of artificial spin ice, an athermal system comprised of geometrically frustrated classical Ising spins with a twofold degenerate ground state, we give experimental and numerical evidence of how such disorder washes out edge effects and provide an estimate of disorder strength in the experimental system. We prove analytically that a sequence of applied fields with fixed amplitude is unable to drive the system to its ground state from a saturated state. These results should be relevant for other systems where disorder does not change the nature of the ground state.

8.
J Phys Condens Matter ; 24(2): 024212, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22173339

ABSTRACT

We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.

9.
Phys Rev Lett ; 107(21): 217204, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181919

ABSTRACT

We report a novel approach to the question of whether and how the ground state can be achieved in square artificial spin ices where frustration is incomplete. We identify two sources of randomness that affect the approach to ground state: quenched disorder in the island response to fields and randomness in the sequence of driving fields. Numerical simulations show that quenched disorder can lead to final states with lower energy, and randomness in the sequence of driving fields always lowers the final energy attained by the system. We use a network picture to understand these two effects: disorder in island responses creates new dynamical pathways, and a random sequence of driving fields allows more pathways to be followed.

10.
Phys Rev Lett ; 107(12): 127201, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-22026792

ABSTRACT

A detailed investigation of magnetic impurity-mediated interlayer exchange coupling observed in Cu(0.94)Mn(0.06)/Co multilayers using polarized neutron reflectometry and magnetic x-ray techniques is reported. Excellent descriptions of temperature and magnetic field dependent biquadratic coupling are obtained using a variant of the loose spin model that takes into account the distribution of the impurity Mn ions in three dimensions. Positional disorder of the magnetic impurities is shown to enhance biquadratic coupling via a new contribution J(2)(fluct), leading to a temperature dependent canting of magnetic domains in the multilayer. These results provide measurable effects on RKKY coupling associated with the distribution of impurities within planes parallel to the interfaces.

11.
J Phys Condens Matter ; 23(10): 105901, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21335637

ABSTRACT

We present a theory for surface polaritons on ferroelectric-antiferromagnetic materials with canted spin structure. A small uniform canted moment is allowed, resulting in a weak ferromagnetism directed in the plane parallel to the surface. Surface and bulk polariton modes for a semi-infinite film are calculated for the case of transverse electric (TE) and transverse magnetic (TM) polarization. Example results are presented using parameters appropriate for BaMnF(4). We find that the surface modes are non-reciprocal for the TE polarization due to the magnetoelectric interaction, and the non-reciprocity can be controlled by an applied electric field. Example results for attenuated total reflection (ATR) are calculated. The magnetoelectric interaction also gives rise to 'leaky' surface modes in the case of TM polarization. These are pseudo-surface waves that exist in the pass band, and dissipate energy into the bulk of the material. We show that these pseudo-surface mode frequencies and properties can be modified by temperature and the application of external electric or magnetic fields.


Subject(s)
Computer Simulation , Ferric Compounds/chemistry , Magnetics/instrumentation , Models, Chemical , Nanostructures/chemistry , Electricity , Electromagnetic Fields , Temperature
12.
Phys Rev Lett ; 104(23): 237206, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867268

ABSTRACT

We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H→0. Several features of the bound states are reproduced using a one-dimensional model, illustrating their general nature.

13.
Phys Rev Lett ; 105(1): 017201, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20867472

ABSTRACT

Local magnetic ordering in artificial spin ices is discussed from the point of view of how geometrical frustration controls dynamics and the approach to steady state. We discuss the possibility of using a particle picture based on vertex configurations to interpret the time evolution of magnetic configurations. Analysis of possible vertex processes allows us to anticipate different behaviors for open and closed edges and the existence of different field regimes. Numerical simulations confirm these results and also demonstrate the importance of correlations and long-range interactions in understanding particle population evolution. We also show that a mean-field model of vertex dynamics gives important insights into finite size effects.

14.
Nanotechnology ; 20(1): 015304, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19417249

ABSTRACT

We report on the control of magnetization reversal in exchange-biased Co/CoO nanorings resulting from the competition between field-cooling-induced unidirectional anisotropy at the Co/CoO interface and shape anisotropy of the elongated Co nanorings. We observed that the magnetization reversal mechanisms and magnitudes of exchange bias fields are strongly dependent on the strength and orientation of the cooling field relative to the major axis of the nanorings. Our results demonstrate a convenient technique to control the magnetization reversal modes in ferromagnetic nanorings.

15.
J Phys Condens Matter ; 21(12): 124203, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-21817445

ABSTRACT

Magnetic relaxation experiments have been used to investigate the non-equilibrium dynamics of FePt nanoparticles. The system exhibits ageing at low temperatures, as well as a narrow energy distribution of the barrier to reversal. These properties were found susceptible to being affected by particle size, matrix and applied field strength. An analysis based on broad rate distributions is presented and compared with results obtained using energy barrier and viscosity interpretations. We find that a single broad distribution of relaxation times suggestive of cooperative effects is sufficient to explain the experimental results.

16.
Phys Rev Lett ; 99(21): 217208, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18233251

ABSTRACT

We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, alpha.

17.
Phys Rev Lett ; 94(20): 207211, 2005 May 27.
Article in English | MEDLINE | ID: mdl-16090287

ABSTRACT

As a magnetic domain wall propagates under small fields through a random potential, it roughens as a result of weak collective pinning, known as creep. Using Kerr microscopy, we report experimental evidence of a surprising deroughening of wall pairs in the creep regime, in a 0.5 nm thick Co layer with perpendicular anisotropy. A bound state is found in cases where two rough domains nucleated far away from one another and first growing under the action of a magnetic field eventually do not merge. The two domains remain separated by a strip of unreversed magnetization, characterized by flat edges and stabilized by dipolar fields. A creep theory that includes dipolar interactions between domains successfully accounts for (i) the domain wall deroughening as the width of the strip decreases and (ii) the quasistatic and dynamic field dependence of the strip width s.

SELECTION OF CITATIONS
SEARCH DETAIL
...