Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Article in English | MEDLINE | ID: mdl-38950166

ABSTRACT

The relationship between the Programmed Death-Ligand 1 (PD-L1)/Programmed Death-1 (PD-1) pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 (n = 59) and ARDS2 (n = 78)) or plasma samples alone (ARDS3 (n = 149)) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from bronchoalveolar lavage fluid (BALF) (n = 18) and blood (n = 16) from critically-ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma levels of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher levels of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining compared with PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells compared with subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar vs. blood compartments given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1/PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.

2.
Kidney Int ; 106(2): 188-190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032964

ABSTRACT

This commentary addresses some of the strengths, shortcomings, and challenges of the genome-wide association study of acute kidney injury (AKI) report in this issue. This AKI genome-wide association study is well executed and provides significant progress in finding 2 genome-wide significant loci. However, significant interpretive challenges remain, where advancements in methods are needed because of the clinical heterogeneity of the AKI phenotype, plus possible bias due to genetic correlation between index hospitalization risk and AKI risk.


Subject(s)
Acute Kidney Injury , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Acute Kidney Injury/genetics , Risk Factors , Phenotype , Risk Assessment
3.
medRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39006441

ABSTRACT

Objective: We conducted a Mendelian randomization (MR) study to examine causal associations of C-reactive protein (CRP) with (1) spinal pain; (2) extent of multisite chronic pain; and (3) chronic widespread musculoskeletal pain. Design: Two-sample MR study. Setting/Subjects: We used summary statistics from publicly available genome-wide association studies (GWAS) conducted in multiple cohorts and biobanks. Genetic instrumental variables were taken from an exposure GWAS of CRP (n=204,402). Outcome GWASs examined spinal pain (n=1,028,947), extent of multisite chronic pain defined as the number of locations with chronic pain (n=387,649), and chronic widespread pain (n=249,843). Methods: We examined MR evidence for causal associations using inverse-variance weighted (IVW) analysis and sensitivity analyses using other methods. We calculated odds ratios (ORs), 95% confidence intervals (95% CIs), and p-values, using a Bonferroni correction (p<0.0166) to account for 3 primary comparisons. Results: Greater serum CRP (mg/L) was not significantly causally associated with spinal pain (OR=1.04, 95% CI 1.00-1.08; p=0.07) in IVW analysis. Greater serum CRP also showed no significant causal association with extent of multisite chronic pain in IVW analysis (beta coefficient= 0.014, standard error=0.011; p=0.19). CRP also showed no significant causal association with chronic widespread pain in IVW analysis (OR=1.00, 95% CI 1.00-1.00; p=0.75). All secondary and sensitivity analyses also showed no significant associations. Conclusions: This MR study found no causal association of CRP on spinal pain, the extent of chronic pain, or chronic widespread pain. Future studies examining mechanistic biomarkers for pain conditions should consider other candidates besides CRP.

4.
Cell Rep ; 43(6): 114310, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38838223

ABSTRACT

Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.


Subject(s)
Apolipoprotein L1 , Interferon-gamma , Kidney Diseases , Pyroptosis , Humans , Apolipoprotein L1/metabolism , Apolipoprotein L1/genetics , COVID-19/metabolism , COVID-19/pathology , COVID-19/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Interferon-gamma/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Pyroptosis/genetics , SARS-CoV-2/metabolism , Signal Transduction
6.
J Cyst Fibros ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37949747

ABSTRACT

BACKGROUND: Our objective was to discover novel urinary biomarkers of antibiotic-associated nephrotoxicity using an ex-vivo human microphysiological system (MPS) and to translate these findings to a prospectively enrolled cystic fibrosis (CF) population receiving aminoglycosides and/or polymyxin E (colistin) for a pulmonary exacerbation. METHODS: We populated the MPS with primary human kidney proximal tubule epithelial cells (PTECs) from three donors and modeled nephrotoxin injury through exposure to 50 µg/mL polymyxin E for 72 h. We analyzed gene transcriptional responses by RNAseq and tested MPS effluents. We translated candidate biomarkers to a CF cohort via analysis of urine collected prior to, during and two weeks after antibiotics and patients were followed for a median of 3 years after antibiotic use. RESULTS: Polymyxin E treatment resulted in a statistically significant increase in the pro-apoptotic Fas gene relative to control in RNAseq of MPS: fold-change = 1.63, FDR q-value = 7.29 × 10-5. Effluent analysis demonstrated an acute rise of soluble Fas (sFas) concentrations that correlated with cellular injury. In 16 patients with CF, urinary sFas concentrations were significantly elevated during antibiotic treatment, regardless of development of AKI. Over a median of three years of follow up, we identified seven cases of incident chronic kidney disease (CKD). Urinary sFas concentrations during antibiotic treatment were significantly associated with subsequent development of incident CKD (unadjusted relative risk = 2.02 per doubling of urinary sFas, 95 % CI = 1.40, 2.90, p < 0.001). CONCLUSIONS: Using an ex-vivo MPS, we identified a novel biomarker of proximal tubule epithelial cell injury, sFas, and translated these findings to a clinical cohort of patients with CF.

7.
Nat Metab ; 5(6): 955-967, 2023 06.
Article in English | MEDLINE | ID: mdl-37365290

ABSTRACT

Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Mice , Animals , Leigh Disease/drug therapy , Leigh Disease/genetics , Acarbose/pharmacology , Acarbose/therapeutic use , Mitochondrial Diseases/drug therapy , Mitochondria/genetics , Sirolimus/pharmacology , Sirolimus/therapeutic use , Disease Models, Animal , Electron Transport Complex I
9.
Virulence ; 14(1): 2218077, 2023 12.
Article in English | MEDLINE | ID: mdl-37248708

ABSTRACT

Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.


Subject(s)
COVID-19 , Methionine , Humans , Neutrophil Activation , Peptides , N-Formylmethionine/pharmacology , Racemethionine , Neutrophils , Leukocyte L1 Antigen Complex
10.
Reprod Toxicol ; 118: 108362, 2023 06.
Article in English | MEDLINE | ID: mdl-37011698

ABSTRACT

To better define appropriate applications of our 3-dimensional testicular co-culture as a model for reproductive toxicology, we evaluated the ability of the model to capture structural and functional elements that can be targeted by reproductive toxicants. Testicular co-cultures were prepared from postnatal day 5 male rats and cultured with a Matrigel overlay. Following a 2-day acclimation period, we characterized functional pathway dynamics by evaluating morphology, protein expression, testosterone concentrations, and global gene expression at a range of timepoints from experimental days 0-21. Western blotting confirmed expression of Sertoli cell, Leydig cell, and spermatogonial cell-specific protein markers. Testosterone detected in cell culture media indicates active testosterone production. Quantitative pathway analysis identified Gene Ontology biological processes enriched among genes significantly changing over the course of 21 days. Processes enriched among genes significantly increasing through time include general developmental processes (morphogenesis, tissue remodeling, etc.), steroid regulation, Sertoli cell development, immune response, and stress and apoptosis. Processes enriched among genes significantly decreasing over time include several related to male reproductive development (seminiferous tubule development, male gonad development, Leydig cell differentiation, Sertoli cell differentiation), all of which appear to peak in expression between days 1 and 5 before decreasing at later timepoints. This analysis provides a temporal roadmap for specific biological process of interest for reproductive toxicology in the model and anchors the model to sensitive phases of in vivo development, helping to define the relevance of the model for in vivo processes.


Subject(s)
Sertoli Cells , Testis , Male , Rats , Animals , Testis/metabolism , Sertoli Cells/metabolism , Leydig Cells/metabolism , Spermatogonia/metabolism , Testosterone/metabolism
11.
JAMA Surg ; 158(7): 728-736, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37099286

ABSTRACT

Importance: It is not clear which severely injured patients with hemorrhagic shock may benefit most from a 1:1:1 vs 1:1:2 (plasma:platelets:red blood cells) resuscitation strategy. Identification of trauma molecular endotypes may reveal subgroups of patients with differential treatment response to various resuscitation strategies. Objective: To derive trauma endotypes (TEs) from molecular data and determine whether these endotypes are associated with mortality and differential treatment response to 1:1:1 vs 1:1:2 resuscitation strategies. Design, Setting, and Participants: This was a secondary analysis of the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) randomized clinical trial. The study cohort included individuals with severe injury from 12 North American trauma centers. The cohort was taken from the participants in the PROPPR trial who had complete plasma biomarker data available. Study data were analyzed on August 2, 2021, to October 25, 2022. Exposures: TEs identified by K-means clustering of plasma biomarkers collected at hospital arrival. Main Outcomes and Measures: An association between TEs and 30-day mortality was tested using multivariable relative risk (RR) regression adjusting for age, sex, trauma center, mechanism of injury, and injury severity score (ISS). Differential treatment response to transfusion strategy was assessed using an RR regression model for 30-day mortality by incorporating an interaction term for the product of endotype and treatment group adjusting for age, sex, trauma center, mechanism of injury, and ISS. Results: A total of 478 participants (median [IQR] age, 34.5 [25-51] years; 384 male [80%]) of the 680 participants in the PROPPR trial were included in this study analysis. A 2-class model that had optimal performance in K-means clustering was found. TE-1 (n = 270) was characterized by higher plasma concentrations of inflammatory biomarkers (eg, interleukin 8 and tumor necrosis factor α) and significantly higher 30-day mortality compared with TE-2 (n = 208). There was a significant interaction between treatment arm and TE for 30-day mortality. Mortality in TE-1 was 28.6% with 1:1:2 treatment vs 32.6% with 1:1:1 treatment, whereas mortality in TE-2 was 24.5% with 1:1:2 treatment vs 7.3% with 1:1:1 treatment (P for interaction = .001). Conclusions and Relevance: Results of this secondary analysis suggest that endotypes derived from plasma biomarkers in trauma patients at hospital arrival were associated with a differential response to 1:1:1 vs 1:1:2 resuscitation strategies in trauma patients with severe injury. These findings support the concept of molecular heterogeneity in critically ill trauma populations and have implications for tailoring therapy for patients at high risk for adverse outcomes.


Subject(s)
Hemostatics , Shock, Hemorrhagic , Humans , Male , Adult , Blood Transfusion , Resuscitation/methods , Shock, Hemorrhagic/therapy , Injury Severity Score
13.
medRxiv ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824881

ABSTRACT

Background: Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. The mechanisms leading to preeclampsia are unclear; however, there is evidence that preeclampsia is highly heritable. We evaluated the association of polygenic risk scores (PRS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Methods: Participants were obtained from Vanderbilt University's BioVU, the Electronic Medical Records and Genomics network, and the Penn Medicine Biobank. Non-Hispanic Black and White females of reproductive age with indications of pregnancy and genotype information were included. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PRS were obtained from Giri et al 2019. Associations between preeclampsia and each PRS were evaluated separately by race and study population before evidence was meta-analyzed. Prediction models were developed and evaluated using 10-fold cross validation. Results: In the 3,504 Black and 5,009 White individuals included, the rate of preeclampsia was 15.49%. The DBP and SBP PRSs were associated with preeclampsia in Whites but not Blacks. The PP PRS was significantly associated with preeclampsia in Blacks and Whites. In trans-ancestry meta-analysis, all PRSs were associated with preeclampsia (OR DBP =1.10, 95% CI=1.02-1.17, p =7.68×10 -3 ; OR SBP =1.16, 95% CI=1.09-1.23, p =2.23×10 -6 ; OR PP =1.14, 95% CI=1.07-1.27, p =9.86×10 -5 ). However, addition of PRSs to clinical prediction models did not improve predictive performance. Conclusions: Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.

14.
Crit Care Explor ; 5(1): e0827, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36600780

ABSTRACT

Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log2 increase, 1.53; 95% CI, 1.17-2.00; p = 0.002). Higher ANGPTL4 concentrations were also associated with higher proportions of venous thromboembolism and acute respiratory distress syndrome. Longitudinal ANGPTL4 concentrations were significantly different during the first 2 weeks of hospitalization in patients who subsequently died compared with survivors (p for interaction = 8.1 × 10-5). Proteomics analysis demonstrated abundance of ANGPTL4 in lung tissue compared with other organs in COVID-19. ANGPTL4 single-nuclear RNA gene expression was significantly increased in pulmonary alveolar type 2 epithelial cells and fibroblasts in COVID-19 lung tissue compared with controls. CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients.

15.
Int J Hyg Environ Health ; 248: 114090, 2023 03.
Article in English | MEDLINE | ID: mdl-36516690

ABSTRACT

Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.


Subject(s)
Microbiota , Occupational Exposure , Pesticides , Adult , Humans , Child , Pesticides/analysis , Farmers , Azinphosmethyl/analysis , RNA, Ribosomal, 16S , Agriculture , Occupational Exposure/analysis
16.
Nat Commun ; 13(1): 6859, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369178

ABSTRACT

Immunoglobulin A (IgA) mediates mucosal responses to food antigens and the intestinal microbiome and is involved in susceptibility to mucosal pathogens, celiac disease, inflammatory bowel disease, and IgA nephropathy. We performed a genome-wide association study of serum IgA levels in 41,263 individuals of diverse ancestries and identified 20 genome-wide significant loci, including 9 known and 11 novel loci. Co-localization analyses with expression QTLs prioritized candidate genes for 14 of 20 significant loci. Most loci encoded genes that produced immune defects and IgA abnormalities when genetically manipulated in mice. We also observed positive genetic correlations of serum IgA levels with IgA nephropathy, type 2 diabetes, and body mass index, and negative correlations with celiac disease, inflammatory bowel disease, and several infections. Mendelian randomization supported elevated serum IgA as a causal factor in IgA nephropathy. African ancestry was consistently associated with higher serum IgA levels and greater frequency of IgA-increasing alleles compared to other ancestries. Our findings provide novel insights into the genetic regulation of IgA levels and its potential role in human disease.


Subject(s)
Celiac Disease , Diabetes Mellitus, Type 2 , Glomerulonephritis, IGA , Inflammatory Bowel Diseases , Humans , Mice , Animals , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/complications , Genome-Wide Association Study , Celiac Disease/genetics , Genetic Predisposition to Disease , Diabetes Mellitus, Type 2/complications , Immunoglobulin A/genetics , Kidney/metabolism
17.
Obesity (Silver Spring) ; 30(12): 2477-2488, 2022 12.
Article in English | MEDLINE | ID: mdl-36372681

ABSTRACT

OBJECTIVE: High BMI is associated with many comorbidities and mortality. This study aimed to elucidate the overall clinical risk of obesity using a genome- and phenome-wide approach. METHODS: This study performed a phenome-wide association study of BMI using a clinical cohort of 736,726 adults. This was followed by genetic association studies using two separate cohorts: one consisting of 65,174 adults in the Electronic Medical Records and Genomics (eMERGE) Network and another with 405,432 participants in the UK Biobank. RESULTS: Class 3 obesity was associated with 433 phenotypes, representing 59.3% of all billing codes in individuals with severe obesity. A genome-wide polygenic risk score for BMI, accounting for 7.5% of variance in BMI, was associated with 296 clinical diseases, including strong associations with type 2 diabetes, sleep apnea, hypertension, and chronic liver disease. In all three cohorts, 199 phenotypes were associated with class 3 obesity and polygenic risk for obesity, including novel associations such as increased risk of renal failure, venous insufficiency, and gastroesophageal reflux. CONCLUSIONS: This combined genomic and phenomic systematic approach demonstrated that obesity has a strong genetic predisposition and is associated with a considerable burden of disease across all disease classes.


Subject(s)
Diabetes Mellitus, Type 2 , Phenomics , Humans , Electronic Health Records , Genome-Wide Association Study , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Genomics , Genetic Predisposition to Disease , Obesity/epidemiology , Obesity/genetics , Phenotype , Cost of Illness
18.
Nat Med ; 28(8): 1679-1692, 2022 08.
Article in English | MEDLINE | ID: mdl-35915156

ABSTRACT

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors
19.
Nat Commun ; 13(1): 3428, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701404

ABSTRACT

Clinical and epidemiological studies have shown that circulatory system diseases and nervous system disorders often co-occur in patients. However, genetic susceptibility factors shared between these disease categories remain largely unknown. Here, we characterized pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five genomic loci demonstrated statistically significant evidence of pleiotropy. We observed region-specific patterns of direction of genetic effects for the two disease categories, suggesting potential antagonistic and synergistic pleiotropy. Our findings provide insights into the relationship between circulatory system diseases and nervous system disorders which can provide context for future prevention and treatment strategies.


Subject(s)
Cardiovascular Diseases , Nervous System Diseases , Cardiovascular Diseases/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics , Humans , Nervous System Diseases/genetics , Polymorphism, Single Nucleotide
20.
BMC Genomics ; 23(1): 385, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35590255

ABSTRACT

BACKGROUND: As genomic sequencing moves closer to clinical implementation, there has been an increasing acceptance of returning incidental findings to research participants and patients for mutations in highly penetrant, medically actionable genes. A curated list of genes has been recommended by the American College of Medical Genetics and Genomics (ACMG) for return of incidental findings. However, the pleiotropic effects of these genes are not fully known. Such effects could complicate genetic counseling when returning incidental findings. In particular, there has been no systematic evaluation of psychiatric manifestations associated with rare variation in these genes. RESULTS: Here, we leveraged a targeted sequence panel and real-world electronic health records from the eMERGE network to assess the burden of rare variation in the ACMG-56 genes and two psychiatric-associated genes (CACNA1C  and TCF4) across common mental health conditions in 15,181 individuals of European descent. As a positive control, we showed that this approach replicated the established association between rare mutations in LDLR and hypercholesterolemia with no visible inflation from population stratification. However, we did not identify any genes significantly enriched with rare deleterious variants that confer risk for common psychiatric disorders after correction for multiple testing. Suggestive associations were observed between depression and rare coding variation in PTEN (P = 1.5 × 10-4), LDLR (P = 3.6 × 10-4), and CACNA1S (P = 5.8 × 10-4). We also observed nominal associations between rare variants in KCNQ1 and substance use disorders (P = 2.4 × 10-4), and APOB and tobacco use disorder (P = 1.1 × 10-3). CONCLUSIONS: Our results do not support an association between psychiatric disorders and incidental findings in medically actionable gene mutations, but power was limited with the available sample sizes. Given the phenotypic and genetic complexity of psychiatric phenotypes, future work will require a much larger sequencing dataset to determine whether incidental findings in these genes have implications for risk of psychopathology.


Subject(s)
Exome , Genetic Testing , Genetic Testing/methods , Genetic Variation , Genomics/methods , Humans , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...