Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Eur J Cancer ; 170: 196-208, 2022 07.
Article in English | MEDLINE | ID: mdl-35671543

ABSTRACT

BACKGROUND: Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. METHODS: Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. RESULTS AND CONCLUSIONS: This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6].


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Cyclin-Dependent Kinase 6/metabolism , Medulloblastoma , Neuroblastoma , Rhabdomyosarcoma , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Child , Cyclin-Dependent Kinase 4 , Humans
2.
Eur J Cancer ; 162: 107-117, 2022 02.
Article in English | MEDLINE | ID: mdl-34963094

ABSTRACT

BACKGROUND: Owing to the high numbers of paediatric cancer-related deaths, advances in therapeutic options for childhood cancer is a heavily studied field, especially over the past decade. Classical chemotherapy offers some therapeutic benefit but has proven long-term complications in survivors, and there is an urgent need to identify novel target-driven therapies. Replication stress is a major cause of genomic instability in cancer, triggering the stalling of the replication fork. Failure of molecular response by DNA damage checkpoints, DNA repair mechanisms and restarting the replication forks can exacerbate replication stress and initiate cell death pathways, thus presenting as a novel therapeutic target. To bridge the gap between preclinical evidence and clinical utility thereof, we apply the literature-driven systematic target actionability review methodology to published proof-of-concept (PoC) data related to the process of replication stress. METHODS: A meticulous PubMed literature search was performed to gather replication stress-related articles (published between 2014 and 2021) across 16 different paediatric solid tumour types. Articles that fulfilled inclusion criteria were uploaded into the R2 informatics platform [r2.amc.nl] and assessed by critical appraisal. Key evidence based on nine pre-established PoC modules was summarised, and scores based on the quality and outcome of each study were assigned by two separate reviewers. Articles with discordant modules/scores were re-scored by a third independent reviewer, and a final consensus score was agreed upon by adjudication between all three reviewers. To visualise the final scores, an interactive heatmap summarising the evidence and scores associated with each PoC module across all, including paediatric tumour types, were generated. RESULTS AND CONCLUSIONS: 145 publications related to targeting replication stress in paediatric tumours were systematically reviewed with an emphasis on DNA repair pathways and cell cycle checkpoint control. Although various targets in these pathways have been studied in these diseases to different extents, the results of this extensive literature search show that ATR, CHK1, PARP or WEE1 are the most promising targets using either single agents or in combination with chemotherapy or radiotherapy in neuroblastoma, osteosarcoma, high-grade glioma or medulloblastoma. Targeting these pathways in other paediatric malignancies may work as well, but here, the evidence was more limited. The evidence for other targets (such as ATM and DNA-PK) was also limited but showed promising results in some malignancies and requires more studies in other tumour types. Overall, we have created an extensive overview of targeting replication stress across 16 paediatric tumour types, which can be explored using the interactive heatmap on the R2 target actionability review platform [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1].


Subject(s)
Bone Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Cell Cycle Checkpoints , Child , DNA Repair , Humans
3.
Eur J Cancer ; 130: 168-181, 2020 05.
Article in English | MEDLINE | ID: mdl-32224415

ABSTRACT

BACKGROUND: Children with cancer are in urgent need of new therapies, as approximately 25% of patients experience a relapse and 20% succumb to their disease. Moreover, the majority of survivors suffer from clinically relevant health problems. Repurposing of targeted agents developed for adult indications could provide novel therapeutic options for paediatric cancer patients. To prioritise targeted drugs for paediatric clinical development, we applied a systematic review methodology to develop a Target Actionability Review (TAR) strategy. These TARs assess the strength and completeness of published preclinical proof-of-concept (PoC) data by structured critical appraisal of and summarising the available scientific literature for a specific target (pathway) and the associated drugs in paediatric tumours. METHODS: A sensitive literature search in PubMed was performed and relevant papers were identified. For each paper, the individual experimental findings were extracted, marked for paediatric tumour type and categorised into nine separate PoC data modules. Each experimental finding was scored for experimental outcome and quality independently by two reviewers; discrepancies were assessed by a third reviewer and resolved by adjudication. Scores corresponding to one PoC module were merged for each tumour type and visualised in a heat map matrix in the publicly available R2 data portal [r2.amc.nl]. RESULTS AND CONCLUSIONS: To test our TAR methodology, we conducted a pilot study on MDM2 and TP53. The heat map generated from analysis of 161 publications provides a rationale to support drug development in specific paediatric solid and brain tumour types. Furthermore, our review highlights tumour types where preclinical data are incomplete or lacking and for which additional preclinical testing is advisable.


Subject(s)
Neoplasms/epidemiology , Proof of Concept Study , Adolescent , Child , Child, Preschool , Female , Humans , Male , Pediatrics
4.
Am Soc Clin Oncol Educ Book ; 40: 1-8, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32207673

ABSTRACT

Changes in the regulatory environment affecting pediatric cancer drug development in the United States and the European Union provide unprecedented opportunity to advance the concept of precision medicine to children with cancer. Increasing evidence suggests that new drugs and biologic products directed at molecular targets presumed to be etiologically associated with many adult cancers may well provide therapeutic options for selected subsets of children with cancer despite their histologic and biologic differences. Regulatory requirements for early evaluation of appropriate new drugs for children based on their molecular mechanism of action, rather than the specific clinical indications for which they are developed and/or approved, will shorten the unacceptable time lag between first-in-human and first-in-children studies. The relative scarcity of pediatric patients eligible for biomarker-directed studies and the ever-expanding compendium of new targeted agents mandate rational, science-based decision-making in selecting and prioritizing appropriate drugs to study early in development. A critical component of the evidence base in such decision-making includes preclinical testing of relevant drugs in pediatric tumor-specific in vitro and in vivo models. Established preclinical testing programs with academic investigator-industry collaborations are actively engaged in such activities. International collaboration is required to address the resource constraints and increasing number of potential products to be tested in a timely, efficient, nonduplicative, and cost-effective manner.


Subject(s)
Drug Development , Child , Humans
5.
J Thorac Oncol ; 15(4): 541-549, 2020 04.
Article in English | MEDLINE | ID: mdl-31988000

ABSTRACT

INTRODUCTION: Novel rearranged in transfection (RET)-specific tyrosine kinase inhibitors (TKIs) such as selpercatinib (LOXO-292) have shown unprecedented efficacy in tumors positive for RET fusions or mutations, notably RET fusion-positive NSCLC and RET-mutated medullary thyroid cancer (MTC). However, the mechanisms of resistance to these agents have not yet been described. METHODS: Analysis was performed of circulating tumor DNA and tissue in patients with RET fusion-positive NSCLC and RET-mutation positive MTC who developed disease progression after an initial response to selpercatinib. Acquired resistance was modeled preclinically using a CCDC6-RET fusion-positive NSCLC patient-derived xenograft. The inhibitory activity of anti-RET multikinase inhibitors and selective RET TKIs was evaluated in enzyme and cell-based assays. RESULTS: After a dramatic initial response to selpercatinib in a patient with KIF5B-RET NSCLC, analysis of circulating tumor DNA revealed emergence of RET G810R, G810S, and G810C mutations in the RET solvent front before the emergence of clinical resistance. Postmortem biopsy studies reported intratumor and intertumor heterogeneity with distinct disease subclones containing G810S, G810R, and G810C mutations in multiple disease sites indicative of convergent evolution on the G810 residue resulting in a common mechanism of resistance. Acquired mutations in RET G810 were identified in tumor tissue from a second patient with CCDC6-RET fusion-positive NSCLC and in plasma from patients with additional RET fusion-positive NSCLC and RET-mutant MTC progressing on an ongoing phase 1 and 2 trial of selpercatinib. Preclinical studies reported the presence of RET G810R mutations in a CCDC6-RET patient-derived xenograft (from a patient with NSCLC) model of acquired resistance to selpercatinib. Structural modeling predicted that these mutations sterically hinder the binding of selpercatinib, and in vitro assays confirmed loss of activity for both anti-RET multikinase inhibitors and selective RET TKIs. CONCLUSIONS: RET G810 solvent front mutations represent the first described recurrent mechanism of resistance to selective RET inhibition with selpercatinib. Development of potent inhibitor of these mutations and maintaining activity against RET gatekeeper mutations could be an effective strategy to target resistance to selective RET inhibitors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins c-ret , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles , Pyridines , Solvents , Transfection
6.
Oncogene ; 39(5): 987-1003, 2020 01.
Article in English | MEDLINE | ID: mdl-31591478

ABSTRACT

Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors. BMP7v treatment promotes CR-CSC differentiation and recapitulates the cell differentiation-related gene expression profile by suppressing Wnt pathway activity and reducing mesenchymal traits and survival of CR-CSCs. Moreover, in CR-CSC-based mouse avatars, BMP7v exerts an antiangiogenic effect and sensitizes tumor cells to standard chemotherapy regardless of the mutational, MSI, and CMS profiles. Of note, tumor harboring PIK3CA mutations were affected to a lower extent by the combination of BMP7v and chemotherapy. However, the addition of a PI3K inhibitor to the BMP7v-based combination potentiates PIK3CA-mutant tumor drug response and reduces the metastatic lesion size. These data suggest that BMP7v treatment may represent a useful antiangiogenic and prodifferentiation agent, which renders CSCs sensitive to both standard and targeted therapies.


Subject(s)
Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/pharmacology , Colorectal Neoplasms/pathology , Mutation , Animals , Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Humans , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
7.
Oncotarget ; 10(53): 5523-5533, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31565186

ABSTRACT

Vascular endothelial growth factor receptor 2 (VEGFR2) is an attractive therapeutic target in solid malignancies due to its central role in tumor angiogenesis. Ramucirumab (Cyramza®, LY3009806) is a human monoclonal antibody specific for VEGFR2 approved for several adult indications and currently in a phase 1 clinical trial for pediatric patients with solid tumors (NCT02564198). Here, we evaluated ramucirumab in vitro and the anti-murine VEGFR2 antibody DC101 in vivo with or without chemotherapy across a range of pediatric cancer models. Ramucirumab abrogated in vitro endothelial cord formation driven by cancer cell lines representing multiple pediatric histologies; this response was independent of the origin of the tumor cell-line. Several pediatric cancer mouse models responded to single agent DC101-mediated VEGFR2 inhibition with tumor growth delay. Preclinical stable disease and partial xenograft regressions were observed in mouse models of Ewing's sarcoma, synovial sarcoma, neuroblastoma, and desmoplastic small round cell tumor treated with DC101 and cytotoxic chemotherapy. In contrast, DC101 treatment in osteosarcoma models had limited efficacy alone or in combination with chemotherapeutics. Our data indicate differential efficacy of targeting the VEGFR2 pathway in pediatric models and support the continued evaluation of VEGFR2 inhibition in combination with cytotoxic chemotherapy in multiple pediatric indications.

8.
Mol Cancer Ther ; 18(12): 2207-2219, 2019 12.
Article in English | MEDLINE | ID: mdl-31530649

ABSTRACT

Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A-selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition-associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A-selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.


Subject(s)
Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Mitosis/drug effects , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , HeLa Cells , Humans , Male
9.
EBioMedicine ; 40: 224-230, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30711517

ABSTRACT

BACKGROUND: Olaratumab (LY3012207/IMC-3G3/Lartruvo™) is a fully human monoclonal antibody specific for platelet-derived growth factor receptor alpha (PDGFRα). Phase Ib/II trial results of olaratumab plus doxorubicin in adult patients with advanced soft tissue sarcoma (STS) supported accelerated FDA approval of this regimen. Radiation therapy (RT) is frequently used for high-risk localized STS. However, olaratumab has not been tested with concurrent RT. Here, we evaluate the chimeric anti-mouse PDGFRα antibody 1E10Fc as a radiosensitizer in a primary mouse model of STS. METHODS: Primary STS were initiated in mice. When tumors reached 70 mm3, mice were allocated into treatment groups: 1) isotype, 2) 1E10Fc, 3) isotype + RT, 4) 1E10Fc + RT. 1E10Fc or isotype was given biweekly. RT (25 Gy delivered in 5 daily 5 Gy fractions) was initiated on Day 0 with first drug treatment. Tumors were measured 3× per week. Upon reaching 900 mm3, tumors and lungs were harvested. A two-way ANOVA was performed to compare tumor growth delay. Primary tumors were stained for CD31 and PDGFRα and lungs were assessed for micrometastases. A Chi-square test was performed to compare the development of micrometastases in the lungs after treatment with 1E10Fc or isotype. FINDINGS: RT significantly delayed time to tumor quintupling compared to no RT (p < 0·0001) [two-way ANOVA], but no difference in tumor growth was seen between mice receiving isotype or 1E10Fc treatment regardless of concurrent RT. Lower microvessel density was observed in the 1E10Fc + RT group. Fewer mice treated with 1E10Fc had micrometastases, but this difference was not statistically significant (p < 0·09). INTERPRETATION: 1E10Fc did not act as a radiosensitizer in this primary STS model. FUNDING: This study was funded by a research agreement from Eli Lilly and Company.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Radiation-Sensitizing Agents/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Sarcoma/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Radiotherapy , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sarcoma/pathology , Sarcoma/therapy , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
10.
Int J Cancer ; 144(6): 1331-1344, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30414187

ABSTRACT

Bevacizumab, a VEGF-targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t-test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t-test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over-expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient-derived glioma stem-like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab-treated rats. Our study indicates that bevacizumab-induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Bevacizumab/pharmacology , Brain Neoplasms/drug therapy , Endothelium/drug effects , Glioblastoma/drug therapy , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Adult , Animals , Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain/cytology , Brain/drug effects , Brain/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Drug Resistance, Neoplasm , Endothelial Cells , Endothelium/cytology , Endothelium/pathology , Epithelial-Mesenchymal Transition/drug effects , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Neoplasm Proteins/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Nude , Receptors, Cell Surface/genetics , Survival Analysis , Treatment Outcome , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
11.
Clin Cancer Res ; 25(7): 2278-2289, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30563935

ABSTRACT

PURPOSE: Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy. EXPERIMENTAL DESIGN: DNA damage and changes in cell signaling following in vitro prexasertib treatment in pediatric sarcoma cell lines were analyzed by Western blot and high content imaging. Antitumor activity of prexasertib as a single agent or in combination with different chemotherapies was explored in cell line-derived (CDX) and patient-derived xenograft (PDX) mouse models representing nine different pediatric cancer histologies. RESULTS: Pediatric sarcoma cell lines were highly sensitive to prexasertib treatment in vitro, resulting in activation of the DNA damage response. Two PDX models of desmoplastic small round cell tumor and one malignant rhabdoid tumor CDX model responded to prexasertib with complete regression. Prexasertib monotherapy also elicited robust responses in mouse models of rhabdomyosarcoma. Concurrent administration with chemotherapy was sufficient to overcome innate resistance or prevent acquired resistance to prexasertib in preclinical models of neuroblastoma, osteosarcoma, and Ewing sarcoma, or alveolar rhabdomyosarcoma, respectively. CONCLUSIONS: Prexasertib has significant antitumor effects as a monotherapy or in combination with chemotherapy in multiple preclinical models of pediatric cancer. These findings support further investigation of prexasertib in pediatric malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrazoles/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Child , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Synergism , Humans , Mice , Neoplasms/drug therapy , Sarcoma, Ewing , Xenograft Model Antitumor Assays
12.
Clin Cancer Res ; 24(23): 6028-6039, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30131386

ABSTRACT

PURPOSE: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. EXPERIMENTAL DESIGN: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. RESULTS: Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. CONCLUSIONS: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cell Cycle , DNA Methylation , Interferons/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Signal Transduction/drug effects , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Humans , Mice , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/pathology , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 24(4): 847-857, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29191969

ABSTRACT

Purpose: Platelet-derived growth factor receptor α (PDGFRα) is implicated in several adult and pediatric malignancies, where activated signaling in tumor cells and/or cells within the microenvironment drive tumorigenesis and disease progression. Olaratumab (LY3012207/IMC-3G3) is a human mAb that exclusively binds to PDGFRα and recently received accelerated FDA approval and conditional EMA approval for treatment of advanced adult sarcoma patients in combination with doxorubicin. In this study, we investigated olaratumab in preclinical models of pediatric bone and soft tissue tumors.Experimental Design: PDGFRα expression was evaluated by qPCR and Western blot analysis. Olaratumab was investigated in in vitro cell proliferation and invasion assays using pediatric osteosarcoma and rhabdoid tumor cell lines. In vivo activity of olaratumab was assessed in preclinical mouse models of pediatric osteosarcoma and malignant rhabdoid tumor.Results:In vitro olaratumab treatment of osteosarcoma and rhabdoid tumor cell lines reduced proliferation and inhibited invasion driven by individual platelet-derived growth factors (PDGFs) or serum. Furthermore, olaratumab delayed primary tumor growth in mouse models of pediatric osteosarcoma and malignant rhabdoid tumor, and this activity was enhanced by combination with either doxorubicin or cisplatin.Conclusions: Overall, these data indicate that olaratumab, alone and in combination with standard of care, blocks the growth of some preclinical PDGFRα-expressing pediatric bone and soft tissue tumor models. Clin Cancer Res; 24(4); 847-57. ©2017 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Sarcoma/drug therapy , Soft Tissue Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal/administration & dosage , Cell Line , Cell Line, Tumor , Child , Disease-Free Survival , Humans , Mice, Nude , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sarcoma/genetics , Sarcoma/metabolism , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
14.
Front Oncol ; 7: 203, 2017.
Article in English | MEDLINE | ID: mdl-28955656

ABSTRACT

Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell-cell as well as cell-microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

15.
Clin Cancer Res ; 23(15): 4354-4363, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28270495

ABSTRACT

Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G2-M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma.Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma.Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature.Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR.


Subject(s)
Checkpoint Kinase 1/genetics , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Pyrazines/administration & dosage , Pyrazoles/administration & dosage , Animals , Cell Line, Tumor , Checkpoint Kinase 1/antagonists & inhibitors , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , Humans , Mice , Neuroblastoma/genetics , Neuroblastoma/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
16.
Neuro Oncol ; 19(8): 1097-1108, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28204560

ABSTRACT

BACKGROUND: Advances from glioma stemlike cell (GSC) research, though increasing our knowledge of glioblastoma (GBM) biology, do not influence clinical decisions yet. We explored the translational power of GSC-enriched cultures from patient-derived tumorspheres (TS) in predicting treatment response. METHODS: The relationship between TS growth and clinical outcome was investigated in 52 GBMs treated with surgical resection followed by radiotherapy and temozolomide (TMZ). The effect on TS of radiation (6 to 60 Gy) and of TMZ (3.9 µM to 1 mM) was related with patients' survival. RESULTS: Generation of TS was an independent factor for poor overall survival (OS) and poor progression-free survival (PFS) (P < .0001 and P = .0010, respectively). Growth rate and clonogenicity of TS predicted poor OS. In general, TS were highly resistant to both radiation and TMZ. Resistance to TMZ was stronger in TS with high clonogenicity and fast growth (P < .02). Shorter PFS was associated with radiation LD50 (lethal dose required to kill 50% of TS cells) >12 Gy of matched TS (P = .0484). A direct relationship was found between sensitivity of TS to TMZ and patients' survival (P = .0167 and P = .0436 for OS and PFS, respectively). Importantly, values for TMZ half-maximal inhibitory concentration <50 µM, which are in the range of plasma levels achieved in vivo, identified cases with longer OS and PFS (P = .0020 and P = .0016, respectively). CONCLUSIONS: Analysis of TS holds translational relevance by predicting the response of parent tumors to radiation and, particularly, to TMZ. Dissecting the clonogenic population from proliferating progeny in TS can guide therapeutic strategies to a more effective drug selection and treatment duration.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , Chemoradiotherapy/methods , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease-Free Survival , Female , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Middle Aged , Temozolomide
17.
Oncotarget ; 8(6): 9251-9266, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-27999210

ABSTRACT

Activating mutations in the KRAS and BRAF genes, leading to hyperactivation of the RAS/RAF/MAPK oncogenic signaling cascade, are common in patients with colorectal cancer (CRC). While selective BRAF inhibitors are efficacious in BRAFmut melanoma, they have limited efficacy in BRAFmut CRC patients. In a RASmut background, selective BRAF inhibitors are contraindicated due to paradoxical activation of the MAPK pathway through potentiation of CRAF kinase activity. A way to overcome such paradoxical activation is through concurrent inhibition of the kinase activity of both RAF isoforms. Here, we further examined the effects of LY3009120, a panRAF and RAF dimer inhibitor, in human models of CRC with various mutational backgrounds. We demonstrate that LY3009120 induced anti-proliferative effects in BRAFmut and KRASmut CRC cell lines through G1-cell cycle arrest. The anti-proliferative effects of LY3009120 in KRASmut CRC cell lines phenocopied molecular inhibition of RAF isoforms by simultaneous siRNA-mediated knockdown of ARAF, BRAF and CRAF. Additionally, LY3009120 displayed significant activity in in vivo BRAFmut and KRASmut CRC xenograft models. Examination of potential resistance to LY3009120 demonstrated RAF-independent ERK and AKT activation in the KRASmut CRC cell line HCT 116. These findings describe the preclinical activity of a panRAF inhibitor in a BRAFmut and KRASmut CRC setting.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Mutation , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Genetic Predisposition to Disease , HCT116 Cells , HT29 Cells , Humans , Phenotype , Proto-Oncogene Proteins A-raf/antagonists & inhibitors , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins A-raf/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , RNA Interference , Rats, Nude , Time Factors , Transfection , Tumor Burden/drug effects
18.
PLoS One ; 11(3): e0150585, 2016.
Article in English | MEDLINE | ID: mdl-26954567

ABSTRACT

SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin's lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Hematologic Neoplasms/metabolism , Receptors, CXCR4/antagonists & inhibitors , Animals , Annexin A5/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CXCL12/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/mortality , Hematologic Neoplasms/pathology , Humans , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 22(5): 1095-102, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26581242

ABSTRACT

PURPOSE: p38 MAPK regulates the production of cytokines in the tumor microenvironment and enables cancer cells to survive despite oncogenic stress, radiotherapy, chemotherapy, and targeted therapies. Ralimetinib (LY2228820 dimesylate) is a selective small-molecule inhibitor of p38 MAPK. This phase I study aimed to evaluate the safety and tolerability of ralimetinib, as a single agent and in combination with tamoxifen, when administered orally to patients with advanced cancer. EXPERIMENTAL DESIGN: The study design consisted of a dose-escalation phase performed in a 3+3 design (Part A; n = 54), two dose-confirmation phases [Part B at 420 mg (n = 18) and Part C at 300 mg (n = 8)], and a tumor-specific expansion phase in combination with tamoxifen for women with hormone receptor-positive metastatic breast cancer refractory to aromatase inhibitors (Part D; n = 9). Ralimetinib was administered orally every 12 hours on days 1 to 14 of a 28-day cycle. RESULTS: Eighty-nine patients received ralimetinib at 11 dose levels (10, 20, 40, 65, 90, 120, 160, 200, 300, 420, and 560 mg). Plasma exposure of ralimetinib (Cmax and AUC) increased in a dose-dependent manner. After a single dose, ralimetinib inhibited p38 MAPK-induced phosphorylation of MAPKAP-K2 in peripheral blood mononuclear cells. The most common adverse events, possibly drug-related, included rash, fatigue, nausea, constipation, pruritus, and vomiting. The recommended phase II dose was 300 mg every 12 hours as monotherapy or in combination with tamoxifen. Although no patients achieved a complete response or partial response,19 patients (21.3%) achieved stable disease with a median duration of 3.7 months, with 9 of these patients on study for ≥ 6 cycles. CONCLUSIONS: Ralimetinib demonstrated acceptable safety, tolerability, and pharmacokinetics for patients with advanced cancer.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/pathology , Imidazoles/administration & dosage , Neoplasms/drug therapy , Pyridines/administration & dosage , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions/classification , Female , Humans , Imidazoles/pharmacokinetics , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Pyridines/pharmacokinetics , Tumor Microenvironment/drug effects
20.
PLoS One ; 10(4): e0125697, 2015.
Article in English | MEDLINE | ID: mdl-25919028

ABSTRACT

Bone morphogenetic proteins (BMPs), members of the TGF-ß superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.


Subject(s)
Bone Morphogenetic Protein 7/therapeutic use , Endothelial Cells/metabolism , Glioblastoma/blood supply , Neovascularization, Pathologic/drug therapy , Adipose Tissue/cytology , Animals , Bone Morphogenetic Protein 7/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/pharmacology , Drug Combinations , Endothelial Cells/drug effects , Fibroblast Growth Factor 2/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Laminin/pharmacology , Male , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/drug effects , Proteoglycans/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...