Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(1): e202303877, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38088555

ABSTRACT

Invited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-ß. Read the full text of the article at 10.1002/chem.202302553.

2.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37815001

ABSTRACT

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

3.
Nat Commun ; 14(1): 129, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624095

ABSTRACT

Many catalytic processes depend on the sorption and conversion of gaseous molecules on the surface of (porous) functional materials. These events often preferentially occur on specific, undercoordinated, external surface sites. Here we show the combination of in situ Photo-induced Force Microscopy (PiFM) with Density Functional Theory (DFT) calculations to study the site-specific sorption and conversion of formaldehyde on the external surfaces of well-defined faceted ZIF-8 microcrystals with nanoscale resolution. We observed preferential adsorption of formaldehyde on high index planes. Moreover, in situ PiFM allowed us to visualize unsaturated nanodomains within extended external crystal planes, showing enhanced sorption behavior on the nanoscale. Additionally, on defective ZIF-8 crystals, structure sensitive conversion of formaldehyde through a methoxy- and a formate mechanism mediated by Lewis acidity was found. Strikingly, sorption and conversion were influenced more by the external surface termination than by the concentration of defects. DFT calculations showed that this is due to the presence of specific atomic arrangements on high-index crystal surfaces. With this research, we showcase the high potential of in situ PiFM for structure sensitivity studies on porous functional materials.

4.
Angew Chem Int Ed Engl ; 61(5): e202114388, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34788496

ABSTRACT

The development of improved zeolite materials for applications in separation and catalysis requires understanding of mass transport. Herein, diffusion of single molecules is tracked in the straight and sinusoidal channels of the industrially relevant ZSM-5 zeolites using a combination of single-molecule localization microscopy and uniformly oriented zeolite thin films. Distinct motion behaviors are observed in zeolite channels with the same geometry, suggesting heterogeneous guest-host interactions. Quantification of the diffusion heterogeneities in the sinusoidal and straight channels suggests that the geometry of zeolite channels dictates the mobility and motion behavior of the guest molecules, resulting in diffusion anisotropy. The study of hierarchical zeolites shows that the addition of secondary pore networks primarily enhances the diffusivity of sinusoidal zeolite channels, and thus alleviating the diffusion limitations of microporous zeolites.

6.
Angew Chem Int Ed Engl ; 59(52): 23480-23484, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32885556

ABSTRACT

A novel route for the production of the versatile chemical building block phthalide from biorenewable furfuryl alcohol and acrylate esters is presented. Two challenges that limit sustainable aromatics production via Diels-Alder (DA) aromatisation-an unfavourable equilibrium position and undesired regioselectivity when using asymmetric addends-were addressed using a dynamic kinetic trapping strategy. Activated acrylates were used to speed up the forward and reverse DA reactions, allowing for one of the four DA adducts to undergo a selective intramolecular lactonisation reaction in the presence of a weak base. The adduct is removed from the equilibrium pool, pulling the system completely to the product with a fixed, desired regiochemistry. A single 1,2-regioisomeric lactone product was formed in up to 86 % yield and the acrylate activating agent liberated for reuse. The lactone was aromatised to give phthalide in almost quantitative yield in the presence of Ac2 O and a catalytic amount of strong acid, or in 79 % using only catalytic acid.


Subject(s)
Benzofurans/chemistry , Cycloaddition Reaction/methods , Furans/chemistry , Biomass
7.
Angew Chem Int Ed Engl ; 59(36): 15502-15506, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32026555

ABSTRACT

Establishing structure-reactivity relationships for specific channel orientations of zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, a well-defined model system was developed to build structure-reactivity relationships for specific zeolite-channel orientations during various catalytic reaction processes, for example, the methanol- and ethanol-to-hydrocarbons (MTH and ETH) process as well as oligomerization reactions. The entrapped and effluent hydrocarbons from single-oriented zeolite ZSM-5 channels during the MTH process were monitored by using operando UV/Vis diffuse reflectance spectroscopy (DRS) and on-line mass spectrometry (MS), respectively. The results reveal that the straight channels favor the formation of internal coke, promoting the aromatic cycle. Furthermore, the sinusoidal channels produce aromatics, (e.g., toluene) that further grow into larger polyaromatics (e.g., graphitic coke) leading to deactivation of the zeolites. This underscores the importance of careful engineering of materials to suppress coke formation and tune product distribution by rational control of the location of zeolite acid sites and crystallographic orientations.

SELECTION OF CITATIONS
SEARCH DETAIL
...