Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26415126

ABSTRACT

Coherent compounding can provide high frame rates and wide regions of interest for imaging of blood flow. However, motion will cause out-of-phase summation, potentially causing image degradation. In this work the impact of blood motion on SNR and the accuracy of Doppler velocity estimates are investigated. A simplified model for the compounded Doppler signal is proposed. The model is used to show that coherent compounding acts as a low-pass filter on the coherent compounding Doppler signal, resulting in negatively biased velocity estimates. Simulations and flow phantom experiments are used to quantify the bias and Doppler SNR for different velocities and beam-to-flow (BTF) angles. It is shown that the bias in the mean velocity increases with increasing beam-to-flow angle and/or blood velocity, whereas the SNR decreases; losses up to 4 dB were observed in the investigated scenarios. Further, a 2-D motion correction scheme is proposed based on multi-angle vector Doppler velocity estimates. For a velocity of 1.1 v(Nyq) and a BTF angle of 75°, the bias was reduced from 30% to less than 4% in simulations. The motion correction scheme was also applied to flow phantom and in vivo recordings, in both cases resulting in a substantially reduced mean velocity bias and an SNR less dependent on blood velocity and direction.


Subject(s)
Echocardiography, Doppler/methods , Signal Processing, Computer-Assisted , Blood Flow Velocity/physiology , Carotid Artery, Common/physiology , Humans , Phantoms, Imaging
2.
Ultrasound Med Biol ; 38(3): 476-86, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22264409

ABSTRACT

The ultrasound exposure parameters that maximize drug release from dierucoyl-phosphatidylcholine (DEPC)-based liposomes were studied using two transducers operating at 300 kHz and 1 MHz. Fluorescent calcein was used as a model drug, and the release from liposomes in solution was measured using a spectrophotometer. The release of calcein was more efficient at 300 kHz than at 1 MHz, with thresholds of peak negative pressures of 0.9 MPa and 1.9 MPa, respectively. Above this threshold, the release increased with increasing peak negative pressure, mechanical index (MI), and duty cycle. The amount of drug released followed first-order kinetics and increased with exposure time to a maximal release. To increase the release further, the MI had to be increased. The results demonstrate that the MI and the overall exposure time are the major parameters that determine the drug's release. The drug's release is probably due to mechanical (cavitation) rather than thermal effects, and that was also confirmed by the detection of hydroxide radicals.


Subject(s)
Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , Fluoresceins/chemistry , Liposomes/chemistry , Liposomes/radiation effects , Sonication/methods , Diffusion/radiation effects , Dose-Response Relationship, Radiation , Fluoresceins/radiation effects , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...