Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol Biotechnol ; 9(1): 7, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303960

ABSTRACT

To obtain special wood properties for various technical applications, fungi with their broad spectrum of activity can make a contribution. The foundations for today's mycological wood modifications were laid by researchers who wanted to increase the yield of edible mushrooms. They noticed the changed properties of the wooden substrate by the progressive wood degradation. Controlled use of fungi and an eye for the technical benefits of mycologically degraded wood revolutionized the fundaments of wood modification, primarily biological. In this context, the so-called Myko-Holz (myco-wood) plays a unique role and influences the current research for pencil wood, tone wood or even spalting.

2.
Eng Life Sci ; 21(3-4): 270-282, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33716624

ABSTRACT

The replacement of potentially hazardous synthetic dyes with natural dyes and pigments are of great interest for a sustainable economy. In order to obtain cost-efficient, environmentally friendly and competitive products, improvements in the cultivation and extraction of pigment-producing organisms and in dyeing processes are necessary. In our study, we were able to scale up the production of xylindein by Chlorociboria aeruginascens from 3 to 70 L bioreactor cultivations. We have identified important bioprocess parameters like low shear stress (150 rpm, tip speed <0.5 m/s) for optimal pigment yield (4.8 mg/L/d). Additionally, we have demonstrated the potential of laetiporic acid production by Laetiporus sulphureus in various cultivation systems and media, achieving dried biomass concentrations of almost 10 g/L with a 7 L bioreactor cultivation after 17 days. Extractions performed at 70°C and 15 min incubation time showed optimal results. To the best of our knowledge, we have described for the first time the use of this pigment in silk dyeing, which results in a brilliant hue that cannot easily be produced by other natural pigments.

3.
J Fungi (Basel) ; 5(2)2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31181797

ABSTRACT

The soft rot fungus Chlorociboria aeruginascens produces a blue-green pigment xylindein, which is of considerable interest for various applications such as in the veneer industry or in organic semiconductors. To understand the fungal growth as well as pigment production of C. aeruginascens, several studies were performed, the results of which are presented here. These studies investigated various growth conditions such as temperature, pH value, oxygen level and light intensity. It was observed that the formation of xylindein by C. aeruginascens decoupled from growth. In the primary metabolismus, the uncolored biomass is formed. Pigment production took place within the secondary metabolism, while biomass growth as well as pigment production depended on various growth conditions. It was also found that certain conditions encourage the switch in metabolism, leading to pigment production.

4.
J Fungi (Basel) ; 5(2)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100858

ABSTRACT

The blue-green pigment xylindein, produced by the soft rot fungus Chlorociboria aeruginascens, is of considerable interest for various applications such as the veneer industry or organic semiconductors. The studies presented were performed in order to understand the fungal growth as well as the pigment production of C. aeruginascens. Therefore, various nutrient compositions were investigated. As a result, observations of the formation of xylindein through C. aeruginascens decoupling from growth were made. In the primary metabolism the uncolored biomass is formed. Various carbohydrates were determined as nutrients for the fungus and as a nitrogen source it was observed that the fungus prefers the complex organic nitrogen source, that being yeast extract. Furthermore, it was discovered that the ratio between carbohydrate and nitrogen sources encourages the switch of the metabolism and therewith the production of the blue-green pigment xylindein.

SELECTION OF CITATIONS
SEARCH DETAIL
...