Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895491

ABSTRACT

It is estimated that 1 in 36 children are affected by autism spectrum disorder (ASD) in the United States, which is nearly a twofold increase from a decade ago. Recent genetic studies have identified de novo loss-of-function (dnLoF) mutations in the Down Syndrome Cell Adhesion Molecule (DSCAM) as a strong risk factor for ASD. Previous research has shown that DSCAM ablation confers social interaction deficits and perseverative behaviors in mouse models. However, it remains unknown to what extent DSCAM underexpression captures the full range of behaviors, specifically cognitive phenotypes, presented in ASD. Here, we conducted a comprehensive cognitive behavioral phenotyping which revealed that loss of one copy of DSCAM , as in the DSCAM 2J +/- mice, displayed hyperactivity, increased anxiety, and motor coordination impairments. Additionally, hippocampal-dependent learning and memory was affected, including working memory, long-term memory, and contextual fear learning. Interestingly, implicit learning processes remained intact. Therefore, DSCAM LoF produces autistic-like behaviors that are similar to human cases of ASD. These findings further support a role for DSCAM dnLoF mutations in ASD and suggest DSCAM 2J +/- as a suitable model for ASD research. Summary Statement: Autism spectrum disorder represents a growing patient population. Loss of one copy of the DSCAM gene provides a promising mouse model that reproduces autistic-like behaviors for research and therapeutic testing.

2.
J Alzheimers Dis ; 82(4): 1683-1702, 2021.
Article in English | MEDLINE | ID: mdl-34219712

ABSTRACT

BACKGROUND: Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE: To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aß, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS: Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS: We show that neuronal cell cycle re-entry in humanized Aß plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION: Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cell Cycle/physiology , Gene Knock-In Techniques , Mice, Transgenic , Neurons/metabolism , Neuropathology , Animals , Brain/pathology , Disease Models, Animal , Humans , Mice , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...