Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 122(24): 6431-6441, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29741378

ABSTRACT

Excited-state interchromophoric couplings in π-conjugated polymers present a daunting challenge to study as their spectroscopic signatures are difficult to separate from structure-dependent intrachromophoric spectral characteristics. Using custom-designed molecular model systems in combination with single-molecule spectroscopy, a controlled coupling of the excited states between cofacially arranged π-conjugated oligomers is shown to be possible. Multiscale molecular dynamics simulations allow us to generate a representative ensemble of molecular structures of the model molecule embedded in a polymer matrix and examine the connection between structural fluctuations of the molecule with theoretically predicted and measured spectral signatures. The single molecules in the embedding matrix polymer can be assigned to specific conformational features with the help of computer-based "virtual spectroscopy". By combining a quantum chemical approach with an analytical approach, we show that the coupling between the chromophores is well-described by transition dipole coupling above an interchromophoric separation of ∼4.5 Å. Even for aligned chromophores, however, twisting between repeat units of the π-system and bending of the individual π-systems can lead to a decoupling of the chromophores to a degree far beyond what their equilibrium structures would suggest: tiny displacements of the molecular constituents can dramatically impact excited-state interactions. This observation has profound implications for the design of future tunable organic optoelectronic materials.

2.
Nat Commun ; 8(1): 1641, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29158508

ABSTRACT

The aggregation of conjugated polymers and electronic coupling of chromophores play a central role in the fundamental understanding of light and charge generation processes. Here we report that the predominant coupling in isolated aggregates of conjugated polymers can be switched reversibly between H-type and J-type coupling by partially swelling and drying the aggregates. Aggregation is identified by shifts in photoluminescence energy, changes in vibronic peak ratio, and photoluminescence lifetime. This experiment unravels the internal electronic structure of the aggregate and highlights the importance of the drying process in the final spectroscopic properties. The electronic coupling after drying is tuned between H-type and J-type by changing the side chains of the conjugated polymer, but can also be entirely suppressed. The types of electronic coupling correlate with chain morphology, which is quantified by excitation polarization spectroscopy and the efficiency of interchromophoric energy transfer that is revealed by the degree of single-photon emission.

3.
Proc Natl Acad Sci U S A ; 112(41): E5560-6, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26417079

ABSTRACT

An appealing definition of the term "molecule" arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.

4.
J Phys Chem Lett ; 6(8): 1321-6, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-26263130

ABSTRACT

Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bichromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state--spectral red shifting and broadening and a slowing of photoluminescence decay--correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Ångström molecular dynamics could prove complementary to conventional FRET-based molecular rulers.

5.
Nat Chem ; 5(11): 964-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24153376

ABSTRACT

Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.


Subject(s)
Macrocyclic Compounds/chemistry , Polymers/chemistry , Fluorescence Resonance Energy Transfer , Models, Molecular , Molecular Structure
6.
J Am Chem Soc ; 135(1): 78-81, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23268555

ABSTRACT

A set of π-conjugated oligomer dimers templated in molecular scaffolds is presented as a model system for studying the interactions between chromophores in conjugated polymers (CPs). Single-molecule spectroscopy was used to reveal energy transfer dynamics between two oligomers in either a parallel or oblique-angle geometry. In particular, the conformation of single molecules embedded in a host matrix was investigated via polarized excitation and emission fluorescence microscopy in combination with fluorescence correlation spectroscopy. While the intramolecular interchromophore conformation was found to have no impact on the fluorescence quantum yield, lifetime, or photon statistics (antibunching), the long-term nonequilibrium dynamics of energy transfer within these bichromophoric systems was accessible by studying the linear dichroism in emission at the single-molecule level, which revealed reversible switching of the emission between the two oligomers. In bulk polymer films, interchromophore coupling promotes the migration of excitation energy to quenching sites. Realizing the presence and dynamics of such interactions is crucial for understanding limitations on the quantum efficiency of larger CP materials.


Subject(s)
Fluorescence Resonance Energy Transfer , Polymers/chemistry , Dimerization , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...