Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 107(6): 927-37, 2011 May.
Article in English | MEDLINE | ID: mdl-21385780

ABSTRACT

BACKGROUND AND AIMS: Enhancing the zinc (Zn) concentration in wheat (Triticum aestivum) grain is a breeding objective in order to improve human Zn nutrition. At enhanced plant Zn uptake, grain Zn levels do not increase proportionally and within the grain the endosperm Zn levels remain below grain Zn levels. This study analysed the temporal dynamics of Zn concentrations in grain tissues during grain filling to find major bottlenecks. METHODS: Plants of two cultivars were grown at 1 and 5 mg Zn kg(-1) soil. Individual panicles were harvested 7, 14, 24 or 34 d after their flowering or at maturity and seeds were dissected into constituting tissues, which were analysed for Zn and other minerals. KEY RESULTS: The Zn concentration of the crease was found to increase five- to nine-fold between 7 and 34 d after anthesis, while that of the endosperm decreased by 7 and 45 % when grown at 1 or 5 mg Zn kg(-1), respectively. The Zn turnover rate (d(-1)) in the crease tissues was either independent of the Zn application level or higher at the lower Zn application level, and the Zn concentration increased in the crease tissues with time during grain filling while the turnover rate gradually decreased. CONCLUSIONS: There is significant within-seed control over Zn entering the seed endosperm. While the seed crease Zn concentration can be raised to very high levels by increasing external Zn supply, the endosperm Zn concentrations will not increase correspondingly. The limited transfer of Zn beyond the crease requires more research to provide further insight into the rate-determining processes and their location along the pathway from crease to the deeper endosperm.


Subject(s)
Triticum/metabolism , Zinc/metabolism , Biological Transport , Breeding , Seeds/growth & development , Seeds/metabolism , Seeds/physiology
2.
Planta ; 213(1): 142-6, 2001 May.
Article in English | MEDLINE | ID: mdl-11523650

ABSTRACT

The permeability of biological membranes to boric acid was investigated using the giant internodal cells of the charophyte alga Chara corallina (Klein ex Will. Esk. R.D. Wood). The advantage of this system is that it is possible to distinguish between membrane transport of boron (B) and complexing of B by plant cell walls. Influx of B was found to be rapid, with equilibrium between the intracellular and extracellular phases being established after approximately 24 h when the external concentration was 50 microM. The intracellular concentration at equilibrium was 55 microM, which is consistent with passive distribution of B across the membrane along with a small amount of internal complexation. Efflux of B occurred with a similar half-time to influx, approximately 3 h, which indicates that the intracellular B was not tightly complexed. The concentration dependence of short-term influx measured with 10B-enriched boric acid was biphasic. This was tentatively attributed to the operation of two separate transport systems, a facilitated system that saturates at 5 microM, and a linear component due to simple diffusion of B through the membrane. Vmax and Km for the facilitated transport system were 135 pmol m(-2) s(-1) and 2 microM, respectively. The permeability coefficient for boric acid in the Chara plasmalemma estimated from the slope of the linear influx component was 4.4 x 10(-7) cm s(-1) which is an order of magnitude lower than computed from the ether:water partition coefficient for B.


Subject(s)
Boron/metabolism , Chlorophyta/metabolism , Biological Transport , Cell Membrane Permeability , Cell Wall/metabolism , Extracellular Space/metabolism , Intracellular Fluid/metabolism , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...