Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): A33-A39, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37133000

ABSTRACT

More than two centuries ago, Swiss philosopher I. P. V. Troxler announced in 1804 that fixated images fade away during normal vision. Since this declaration, the phenomenon now known as Troxler fading has become the subject of intensive research. Many researchers were eager to find out why we experience image fading and under what conditions image restoration happens. Here, we investigated the dynamics of color stimulus fading and recovery under sustained eye fixation. The objective of the experiments was to find out which colors fade and recover faster under isoluminant conditions. The stimuli were eight blurred color rings extending to 13° in size. Four unique colors (red, yellow, green, and blue) and four intermediate colors (magenta, cyan, yellow-green, and orange) were used. Stimuli were displayed on a computer monitor with a gray background and were isoluminant to the background. The presentation of the stimulus lasted 2 min and subjects were required to look at the fixation point in the middle of the ring and suppress eye movements. The task for subjects was to report the moments of change in the stimulus visibility by four stages of stimulus completeness. We found that all investigated colors undergo fading and recovery cycles during 2 min of observation. The data suggest that magenta and cyan colors have faster stimulus fading and undergo more recovery cycles, while longer wavelength colors slow down stimulus fading.


Subject(s)
Fixation, Ocular , Rosaniline Dyes , Humans , Eye Movements , Color Perception , Color
2.
J Vis ; 20(6): 20, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32589196

ABSTRACT

Profound vision loss occurs after prolonged exposure to an unchanging featureless visual environment. The effect is sometimes called visual fade. Here we investigate this phenomenon in the color domain using two different experiments. In the first experiment we determine the time needed for a colored background to appear achromatic. Four backgrounds were tested. Each represented the observers' four unique hues. This adaptation time was compared with time to recover after adaptation Hue shifts at the end of the adaptation period were also measured. There were wide individual differences in adaptation times and recovery times. Overall recovery was faster than adaptation (p < 0.02). There were minimal shifts in hue. In the second experiment the changes in saturation (Munsell chroma) and lightness (Munsell value) of the background were monitored at six time intervals during the adapting process. Again asymmetric matching with Munsell samples was used. There were two distinct components to both the adaptation and recovery phases; one fast with time constant <1s, the other slow with time constant between 40 and 160s. The experiments show that the special case of visual fade involving color represents the sensory basis for many color-related effects involving adaptation.


Subject(s)
Adaptation, Ocular/physiology , Color Perception/physiology , Color Vision/physiology , Female , Humans , Male , Photic Stimulation , Time Factors
3.
Neural Comput ; 32(4): 711-740, 2020 04.
Article in English | MEDLINE | ID: mdl-32069177

ABSTRACT

The coding of line orientation in the visual system has been investigated extensively. During the prolonged viewing of a stimulus, the perceived orientation continuously changes (normalization effect). Also, the orientation of the adapting stimulus and the background stimuli influence the perceived orientation of the subsequently displayed stimulus: tilt after-effect (TAE) or tilt illusion (TI). The neural mechanisms of these effects are not fully understood. The proposed model includes many local analyzers, each consisting of two sets of neurons. The first set has two independent cardinal detectors (CDs), whose responses depend on stimulus orientation. The second set has many orientation detectors (OD) tuned to different orientations of the stimulus. The ODs sum up the responses of the two CDs with respective weightings and output a preferred orientation depending on the ratio of CD responses. It is suggested that during prolonged viewing, the responses of the CDs decrease: the greater the excitation of the detector, the more rapid the decrease in its response. Thereby, the ratio of CD responses changes during the adaptation, causing the normalization effect and the TAE. The CDs of the different local analyzers laterally inhibit each other and cause the TI. We show that the properties of this model are consistent with both psychophysical and neurophysiological findings related to the properties of orientation perception, and we investigate how these mechanisms can affect the orientation's sensitivity.

4.
PeerJ ; 6: e6011, 2018.
Article in English | MEDLINE | ID: mdl-30515361

ABSTRACT

Many experiments have demonstrated that the rhythms in the brain influence the initial perceptual information processing. We investigated whether the alternation rate of the perception of a Necker cube depends on the frequency and duration of a flashing Necker cube. We hypothesize that synchronization between the external rhythm of a flashing stimulus and the internal rhythm of neuronal processing should change the alternation rate of a Necker cube. Knowing how a flickering stimulus with a given frequency and duration affects the alternation rate of bistable perception, we could estimate the frequency of the internal neuronal processing. Our results show that the perception time of the dominant stimulus depends on the frequency or duration of the flashing stimuli. The duration of the stimuli, at which the duration of the perceived image was maximal, was repeated periodically at 4 ms intervals. We suppose that such results could be explained by the existence of an internal rhythm of 125 cycles/s for bistable visual perception. We can also suppose that it is not the stimulus duration but the precise timing of the moments of switching on of external stimuli to match the internal stimuli which explains our experimental results. Similarity between the effects of flashing frequency on alternation rate of stimuli perception in present and previously performed experiment on binocular rivalry support the existence of a common mechanism for binocular rivalry and monocular perception of ambiguous figures.

5.
J Opt Soc Am A Opt Image Sci Vis ; 29(2): A275-89, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22330390

ABSTRACT

Cone contrast remains constant, when the same object/background is seen under different illuminations-the von Kries rule [Shevell, Vis. Res. 18, 1649 (1978)]. Here we explore this idea using asymmetric color matching. We find that von Kries adaptation holds, regardless of whether chromatic constancy index is low or high. When illumination changes the stimulus luminance (reflectance), lightness constancy is weak and matching is dictated by object/background luminance contrast. When this contrast is masked or disrupted, lightness constancy mechanisms are more prominent. Thus von Kries adaptation is incompatible with lightness constancy, suggesting that cortical mechanisms must underlie color constancy, as expected from neurophysiological studies [Zeki, Nature 284, 412 (1980); Wild, Nature 313, 133 (1985)].


Subject(s)
Adaptation, Ocular/physiology , Color Perception/physiology , Adult , Color , Female , Humans , Linear Models , Male , Retinal Cone Photoreceptor Cells/cytology , Time Factors
6.
J Opt Soc Am A Opt Image Sci Vis ; 26(7): 1553-63, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19568290

ABSTRACT

Gibson [J. Exp. Psychol. 16, 1 (1993)] observed that during prolonged viewing, a line perceptually rotates toward the nearest vertical or horizontal meridian (the normalization effect), and moreover, the perceived orientation of a subsequently presented line depends on the orientation of the adapting one (the tilt after-effect). The mechanisms of both phenomena remain poorly understood. According to our experimental results, the adapting line perceptually rotates to the nearest of three orientations: vertical, horizontal, and diagonal. We propose a simple neuronal model of orientation detectors whose responses are determined by the cardinal detectors. It is shown that both normalization and tilt after-effect may be explained by adaptation of these cardinal detectors.


Subject(s)
Models, Biological , Rotation , Visual Perception/physiology , Adult , Humans , Middle Aged , Optical Illusions/physiology , Time Factors
7.
Perception ; 34(8): 927-32, 2005.
Article in English | MEDLINE | ID: mdl-16178145

ABSTRACT

Sequential asymmetrical colour matching of forty Munsell samples simulated under illuminant C and one of eight test illuminants was carried out. The subjects matched the appearance of each sample under illuminant C with its appearance under the test illuminant. Samples and background (N7) were presented for 1 s under the test illuminant and were isoluminant with each other. Subjects adjusted hue, chroma, and value under illuminant C. The experiments distinguished two groups of subjects; some observers needed to reduce the luminance of the sample to make a match while others did not. This 'dimming' occurred when the matches were close to cardinal axes, especially the tritanopic confusion line. A model of luminance and cone-opponent mechanisms contributing to brightness can account for the dimming effect. Details of analysis in cone-opponent space (L - M, L + M - S, L + M) are presented in the companion paper (Stanikunas et al, 2005 Perception 34 this issue).


Subject(s)
Color Perception/physiology , Lighting , Adaptation, Ocular , Color Perception Tests , Contrast Sensitivity/physiology , Humans , Photic Stimulation , Psychophysics , Sensory Thresholds/physiology
8.
Perception ; 34(8): 995-1002, 2005.
Article in English | MEDLINE | ID: mdl-16178154

ABSTRACT

A cone-opponent-based vector model is used to derive the activity in the red-green, yellow-blue, and achromatic channels during a sequential asymmetric colour-matching experiment. Forty Munsell samples, simulated under illuminant C, were matched with their appearance under eight test illuminants. The test samples and backgrounds were photometrically isoluminant with each other. According to the model, the orthogonality of the channels is revealed when test illuminants lie along either red-green or yellow blue cardinal axes. The red green and yellow-blue outputs of the channels are described in terms of the hue of the sample. The fact that the three-channel model explains the data in a colour-matching experiment indicates that an early form of colour processing is mediated at a site where the three channels converge, probably the input layer of V1.


Subject(s)
Color Perception/physiology , Lighting , Models, Psychological , Retinal Cone Photoreceptor Cells/physiology , Case-Control Studies , Color Perception Tests , Humans , Photic Stimulation
9.
Neural Netw ; 17(3): 327-37, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15037351

ABSTRACT

The perceptual stability of an object's color under different illuminants is called color constancy. We created a neural network to investigate this phenomenon. The net consisted of one input channel for the background and one for the test object. Each channel had a set of three (L, M, and S) receptors that were transmitting to three opponent neurons. The signals from the opponent neurons were passed to hidden neurons, which were connected to the output neurons. The output signal was generated from the three components of a color vector. The neural net was trained to identify the color of Munsell samples under various illuminants using the back-propagation algorithm. Our study investigated the properties of a successfully trained neural network. Based on the cross-neuron weight analysis, we report that the successfully trained neural net calculates color differences between the test object and the background. By comparing the human visual system to the neural net, we conclude that to satisfy the color constancy phenomenon, the human visual system has to contain two separate components: one to approximate the background color and the other to estimate the color difference between the object and the background.


Subject(s)
Color Perception/physiology , Contrast Sensitivity/physiology , Neural Networks, Computer , Color , Computer Simulation , Humans , Learning , Lighting/methods , Models, Neurological , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...