Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 829: 154541, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35302025

ABSTRACT

High-mountain plant communities are strongly determined by abiotic conditions, especially low temperature, and are therefore susceptible to effects of climate warming. Rising temperatures, however, also lead to increased evapotranspiration, which, together with projected shifts in seasonal precipitation patterns, could lead to prolonged, detrimental water deficiencies. The current study aims at comparing alpine plant communities along elevation and water availability gradients from humid conditions (north-eastern Alps) to a moderate (Central Apennines) and a pronounced dry period during summer (Lefka Ori, Crete) in the Mediterranean area. We do this in order to (1) detect relationships between community-based indices (plant functional leaf and growth traits, thermic vegetation indicator, plant life forms, vegetation cover and diversity) and soil temperature and snow duration and (2) assess if climatic changes have already affected the vegetation, by determining directional changes over time (14-year period; 2001-2015) in these indices in the three regions. Plant community indices responded to decreasing temperatures along the elevation gradient in the NE-Alps and the Apennines, but this elevation effect almost disappeared in the summer-dry mountains of Crete. This suggests a shift from low-temperature to drought-dominated ecological filters. Leaf trait (Leaf Dry Matter Content and Specific Leaf Area) responses changed in direction from the Alps to the Apennines, indicating that drought effects already become discernible at the northern margin of the Mediterranean. Over time, a slight increase in vegetation cover was found in all regions, but thermophilisation occurred only in the NE-Alps and Apennines, accompanied by a decline of cold-adapted cushion plants in the Alps. On Crete, xeromorphic shrubs were increasing in abundance. Although critical biodiversity losses have not yet been observed, an intensified monitoring of combined warming-drought impacts will be required in view of threatened alpine plants that are either locally restricted in the south or weakly adapted to drought in the north.


Subject(s)
Climate , Plants , Biodiversity , Climate Change , Ecosystem , Water
2.
Sci Total Environ ; 624: 1429-1442, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929254

ABSTRACT

Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...