Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(6): pgad190, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383024

ABSTRACT

Lipid monolayers are ubiquitous in biological systems and have multiple roles in biotechnological applications, such as lipid coatings that enhance colloidal stability or prevent surface fouling. Despite the great technological importance of surface-adsorbed lipid monolayers, the connection between their formation and the chemical characteristics of the underlying surfaces has remained poorly understood. Here, we elucidate the conditions required for stable lipid monolayers nonspecifically adsorbed on solid surfaces in aqueous solutions and water/alcohol mixtures. We use a framework that combines the general thermodynamic principles of monolayer adsorption with fully atomistic molecular dynamics simulations. We find that, very universally, the chief descriptor of adsorption free energy is the wetting contact angle of the solvent on the surface. It turns out that monolayers can form and remain thermodynamically stable only on substrates with contact angles above the adsorption contact angle, θads. Our analysis establishes that θads falls into a narrow range of around 60∘-70∘ in aqueous media and is only weakly dependent on the surface chemistry. Moreover, to a good approximation, θads is roughly determined by the ratio between the surface tensions of hydrocarbons and the solvent. Adding small amounts of alcohol to the aqueous medium lowers θads and thereby facilitates monolayer formation on hydrophilic solid surfaces. At the same time, alcohol addition weakens the adsorption strength on hydrophobic surfaces and results in a slowdown of the adsorption kinetics, which can be useful for the preparation of defect-free monolayers.

2.
J Chem Phys ; 157(18): 184707, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36379763

ABSTRACT

Line tension in wetting processes is of high scientific and technological relevance, but its understanding remains vague, mainly because it is difficult to determine. A widely used method to extract line tension relies on the variation of a droplet's contact angle with the droplet's size. Such an approach yields the apparent line tension, which is an effective parameter that factors in numerous contributions to the finite-size dependence, thus masking the actual line tension in terms of the excess free energy of the three-phase contact line. Based on our recent computer simulation study, we investigate how small amounts of nonionic surfactants, such as surface-active impurities, contribute to the apparent line tension in aqueous droplets. When depositing polydisperse droplets, their different surface area-to-volume ratios can result in different final bulk concentrations of surfactants, different excess adsorptions to the interfaces, and, consequently, different contact angles. We show that already trace amounts of longer-chained surfactants in a pre-contaminated liquid are enough to affect measurements of the apparent line tension. Our analysis quantifies to what extent "background" impurities, inevitably present in all kinds of experimental settings, limit the resolution of line tension measurements, which is crucial for avoiding data misinterpretation.

3.
J Phys Chem B ; 126(17): 3374-3384, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35468298

ABSTRACT

Adsorption of small amphiphilic molecules occurs in various biological and technological processes, sometimes desired while other times unwanted (e.g., contamination). Surface-active molecules preferentially bind to interfaces and affect their wetting properties. We use molecular dynamics simulations to study the adsorption of short-chained alcohols (simple surfactants) to the water-vapor interface and solid surfaces of various polarities. With a theoretical analysis, we derive an equation for the adsorption coefficient, which scales exponentially with the molecular surface area and the surface wetting coefficient and is in good agreement with the simulation results. We apply the outcomes to aqueous sessile droplets containing surfactants, where the competition of surfactant adsorptions to both interfaces alters the contact angle in a nontrivial way. The influence of surfactants is the strongest on very hydrophilic and hydrophobic surfaces, whereas droplets on moderately hydrophilic surfaces are less affected.


Subject(s)
Surface-Active Agents , Water , Adsorption , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Water/chemistry , Wettability
4.
Soft Matter ; 18(16): 3226-3233, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35388379

ABSTRACT

Muscle cells with sarcomeric structure exhibit highly non trivial passive mechanical response. The difficulty of its continuum modeling is due to the presence of long-range interactions transmitted by extended protein skeleton. To build a rheological model for muscle 'material', we use a stochastic micromodel, and derive a linear response theory for a half-sarcomere, which can be extended to the whole fibre. Instead of the first order rheological equation, anticipated by Hill on the phenomenological grounds, we obtain a novel second order equation which shows that tension depends not only on its current length and the velocity of stretching, but also on its acceleration. Expressing the model in terms of elementary rheological elements, we show that one contribution to the visco-elastic properties of the fibre originates in cross-bridges, while the other can be linked to inert elements which move in the sarcoplasm. We apply this model to explain the striking qualitative difference between the relaxation in experiments involving perturbation of length vs. those involving perturbation of force, and we use the values of the microscopic parameters for frog muscles to show that the model is in excellent quantitative agreement with physiological experiments.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Sarcomeres/physiology , Sarcomeres/ultrastructure , Viscosity
5.
Elife ; 52016 10 10.
Article in English | MEDLINE | ID: mdl-27719759

ABSTRACT

Cytokinesis in eukaryotic cells is often accompanied by actomyosin cortical flow. Over 30 years ago, Borisy and White proposed that cortical flow converging upon the cell equator compresses the actomyosin network to mechanically align actin filaments. However, actin filaments also align via search-and-capture, and to what extent compression by flow or active alignment drive furrow formation remains unclear. Here, we quantify the dynamical organization of actin filaments at the onset of ring assembly in the C. elegans zygote, and provide a framework for determining emergent actomyosin material parameters by the use of active nematic gel theory. We characterize flow-alignment coupling, and verify at a quantitative level that compression by flow drives ring formation. Finally, we find that active alignment enhances but is not required for ring formation. Our work characterizes the physical mechanisms of actomyosin ring formation and highlights the role of flow as a central organizer of actomyosin network architecture.


Subject(s)
Actomyosin/metabolism , Caenorhabditis elegans/physiology , Cytokinesis , Protein Multimerization , Zygote/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...