Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38544211

ABSTRACT

Soft sensors are increasingly being used to provide important information about production processes that is otherwise only available through off-line laboratory analysis. However, usually, they are developed for a specific application, for which thorough process analysis is performed to provide information for the appropriate selection of model type and model structure. Wide industrial application of soft sensors, however, requires a method for soft sensor development that has a high level of automatism and is applicable to a significant number of industrial processes. A class of processes that is very common in the industry are processes with distinct operating conditions. In this paper, an algorithm that is suitable for the development of soft sensors for this class of processes is presented. The algorithm possesses a high level of automatism, as it requires minimal user engagement regarding the structure of the model, which makes it suitable for implementation as a customary industrial solution. The algorithm is based on a radial basis function artificial neural network, and it enables the automatic selection of the model structure and the determination of model parameters, only based on the training data set. The testing of the presented algorithm is done on the cement production process, since it represents a process with distinct operating conditions. The results of the test show that, besides providing a high level of automatism in model development, the presented algorithm generates a soft sensor with high estimation performance.

2.
Article in English | MEDLINE | ID: mdl-37930904

ABSTRACT

Reliable force control is especially important when using myoelectric upper-limb prostheses as the force defines whether an object will be firmly grasped, damaged, or dropped. It is known from human motor control that the grasping of non-disabled subjects is based on a combination of anticipation and feedback correction. Inspired by this insight, the present study proposes a novel approach to provide artificial sensory feedback to the user of a myoelectric prosthesis using vibrotactile stimulation to facilitate both predictive and corrective processes characteristic of grasping in non-disabled people. Specifically, the level of EMG was conveyed to the subjects while closing the prosthesis (predictive strategy), whereas the actual grasping force was transmitted when the prosthesis closed (corrective strategy). To investigate if this combined EMG and force feedback is indeed an effective method to explicitly close the control loop, 16 non-disabled and 3 transradial amputee subjects performed a set of functional tasks, inspired by the "Box and Block" test, with six target force levels, in three conditions: no feedback, only EMG feedback, and combined feedback. The highest overall performance in non-disabled subjects was obtained with combined feedback (79.6±9.9%), whereas the lowest was achieved with no feedback (53±11.5%). The combined feedback, however, increased the task completion time compared to the other two conditions. A similar trend was obtained also in three amputee subjects. The results, therefore, indicate that the feedback inspired by human motor control is indeed an effective approach to improve prosthesis grasping in realistic conditions when other sources of feedback (vision and audition) are not blocked.


Subject(s)
Artificial Limbs , Humans , Prosthesis Design , Feedback, Sensory/physiology , Hand Strength/physiology , Electromyography/methods , Dioctyl Sulfosuccinic Acid , Hand
3.
IEEE Trans Haptics ; 16(3): 379-390, 2023.
Article in English | MEDLINE | ID: mdl-37436850

ABSTRACT

When using EMG biofeedback to control the grasping force of a myoelectric prosthesis, subjects need to activate their muscles and maintain the myoelectric signal within an appropriate interval. However, their performance decreases for higher forces, because the myoelectric signal is more variable for stronger contractions. Therefore, the present study proposes to implement EMG biofeedback using nonlinear mapping, in which EMG intervals of increasing size are mapped to equal-sized intervals of the prosthesis velocity. To validate this approach, 20 non-disabled subjects performed force-matching tasks using Michelangelo prosthesis with and without EMG biofeedback with linear and nonlinear mapping. Additionally, four transradial amputees performed a functional task in the same feedback and mapping conditions. The success rate in producing desired force was significantly higher with feedback (65.4±15.9%) compared to no feedback (46.2±14.9%) as well as when using nonlinear (62.4±16.8%) versus linear mapping (49.2±17.2%). Overall, in non-disabled subjects, the highest success rate was obtained when EMG biofeedback was combined with nonlinear mapping (72%), and the opposite for linear mapping with no feedback (39.6%). The same trend was registered also in four amputee subjects. Therefore, EMG biofeedback improved prosthesis force control, especially when combined with nonlinear mapping, which showed to be an effective approach to counteract increasing variability of myoelectric signal for stronger contractions.


Subject(s)
Amputees , Artificial Limbs , Touch Perception , Humans , Electromyography , Biofeedback, Psychology , Prosthesis Design
4.
ISA Trans ; 55: 250-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25451819

ABSTRACT

This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development.

SELECTION OF CITATIONS
SEARCH DETAIL
...