Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959632

ABSTRACT

Geopolymer materials have long been known for their competitive properties against traditional construction materials. Their special features include high resistance to elevated temperatures and good fire resistance. They are typically used as insulating materials at temperatures not exceeding 100 °C (because they can achieve a thermal conductivity coefficient of 0.060 W/m × K or less under these conditions). Still, they can also be used as thermal insulation at temperatures exceeding 1000 °C. One technology that uses very high temperatures is metal welding technology, where temperatures often exceed as many as 3000 °C. Geopolymers, due to their properties, can also be an interesting new alternative in various welding applications. This paper presents the preliminary results of pot-proofing the resistance of geopolymers to temperatures exceeding 3000 °C. Test results of a foamed geopolymer insulating a steel substrate are presented, and a geopolymer mold for thermite rail welding was made and realistically tested. The results confirmed the feasibility of using cast geopolymer molds for thermite welding of railroad rails. The geopolymer material performed well during the test and no cracks or other damage occurred. The following article presents the potential of using geopolymer materials for welding applications.

2.
Materials (Basel) ; 15(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897605

ABSTRACT

Today, numerous design solutions require joining thin-walled sheets or profiles as the traditional methods of welding with a consumable electrode in gas shielding, most often used in production processes, do not work well. The reason for this is that a large amount of heat is supplied to the joint, causing numerous welding deformations, defects, and incompatibilities. Moreover, the visual aspect of the connections made more and more often plays an equally crucial role. Therefore, it is important to look for solutions and compare different joining processes in order to achieve production criteria. The paper compares the properties of a 1.5 mm thick steel sheet joined by the manual and robotic MAG 135 and 138 welding process, manual and robotic laser welding, CMT welding with the use of solid or flux-cored wire, and butt welding. The macro- and microstructure, as well as the microhardness distribution of individual regions of the joints, were analyzed depending on the type of joining technology used. Furthermore, the mechanical properties of individual zones of joints were investigated with the use of a digital image correlation system. On the basis of the obtained test results, it was found that the joints made by the processes of manual laser welding and butt welding were characterized by a very regular weld shape, the smallest joint width, and greater grain refinement compared to other analyzed processes. Moreover, this method was characterized by the narrowest zone of hardness increase, only 3 mm, compared to, e.g., a joint made in the process of robotic welding CMT, for which this zone was more than twice as wide. Furthermore, the heat-affected zone for the joints made in this way, in relation to the welds produced by the MAG 135/138 method, was, respectively, 2 and 2.7 times smaller.

SELECTION OF CITATIONS
SEARCH DETAIL
...