Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(16): 4404-4407, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582043

ABSTRACT

This manuscript presents a simple approach to the manufacturing and optimization of a multilevel phase-only diffractive conical lens (Fresnel axicon or "fraxicon"). The method for recording deep type I modifications in fused silica was established and its ability proven. We showed the prospects and limitations of elements processed using this method. The fine and advanced parameters optimization allowed us to get a compensation mechanism for almost uniform refractive index change for each separate layer. The maximum diffraction efficiency of the fraxicon for a wavelength of 515 nm was ∼80%. The measured Bessel beam depth of field was compared with commercially available conical lens axicons and showed good agreement.

2.
Opt Express ; 31(3): 4482-4496, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785415

ABSTRACT

In this study, we demonstrate the elongated Type I modifications in fused silica with an axial length > 50 µm. Such extended longitudinal dimensions were obtained by deep focusing radiation of a femtosecond laser inside fused silica at a depth of 2 mm. The transition from the Type II modification (nanogratings) to the Type I modification (refraction index change) was observed with increasing focusing depth at the constant pulse energy. The refractive index changes of ∼ 1.5×10-3 for a single pass and 2.4×10-3 for multiple passes were demonstrated. The radial dimensions of the deep-focused modifications were confined to 0.5-1.5 µm size. By overlapping the modifications in radial and axial directions, 1D phase grating in the depth range from 2 to 5 mm was recorded, allowing to split of the beam with a diffraction efficiency of > 96%. We demonstrate that the aberration-based recording with a Gaussian beam in fused silica is a simple tool for fabricating complex phase diffractive optical elements.

3.
Opt Express ; 30(2): 1860-1874, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209339

ABSTRACT

The control of laser-induced microcracks in the volume of transparent materials is essential for scribing processes. In this paper, we investigate the effect of various amplitude and single-level phase masks on both transverse and axial intensity distribution of the conventional axicon-generated Bessel beams. Furthermore, we demonstrate the volumetric crack control induced by an asymmetrical central core with an appropriately selected intensity level to avoid the influence of peripheral intensity maxima. Proper alignment of cracks and intra-distance between the modifications results in the reduced separation stress of the scribed samples. Furthermore, the additional amplitude modulation of the incident Gaussian beam is introduced to flatten the axial intensity distribution of the axicon-generated Bessel beam.

4.
Opt Express ; 29(20): 31393-31407, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615232

ABSTRACT

Bursts of femtosecond laser pulses were used to record internal modifications inside fused silica for selective chemical etching. Two-pulse bursts with a variable energy ratio between those pulses at a fixed inter-pulse duration of 14.5 ns were applied for the first time. The selective chemical etching rate of the laser-modified material with the burst of two pulses was compared to the single-pulse regime when etching in HF and KOH etchants. The advantage of the burst-mode processing was demonstrated when etching was performed in the KOH solution. More regular nanogratings were formed, and the etching initiation was more stable when burst pulses were applied for fused silica modification. The vertical planar structures were obtained using the two-pulse bursts with an energy ratio of 1:2, increasing the etching rate by more than 35% compared to the single-pulse processing. The highest ever reported selectivity of 1:2000 was demonstrated by introducing the two-pulse burst mode.

5.
Sci Rep ; 10(1): 16807, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33033319

ABSTRACT

Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, we present the results of LWFA and X-ray generation using dynamic gas density grid built by shock-waves of colliding jets. The experiment was done with the 40 TW, 35 fs laser at the Lund Laser Centre. Electron energies of 30-150 MeV and 1.0 × 108-5.5 × 108 photons per shot of betatron radiation have been measured. The implementation of the betatron source with separate regions of LWFA and plasma density grid raised the efficiency of X-ray generation and increased the number of photons per shot by a factor of 2-3 relative to a single-jet gas target source.

6.
Micromachines (Basel) ; 11(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397123

ABSTRACT

Femtosecond laser-induced selective etching (FLISE) is a promising technology for fabrication of a wide range of optical, mechanical and microfluidic devices. Various etching conditions, together with significant process optimisations, have already been demonstrated. However, the FLISE technology still faces severe limitations for a wide range of applications due to limited processing speed and polarization-dependent etching. In this article, we report our novel results on the double-pulse processing approach on the improvement of chemical etching anisotropy and >30% faster processing speed in fused silica. The effects of pulse delay and pulse duration were investigated for further understanding of the relations between nanograting formation and etching. The internal sub-surface modifications were recorded with double cross-polarised pulses of a femtosecond laser, and a new nanograting morphology (grid-like) was demonstrated by precisely adjusting the processing parameters in a narrow processing window. It was suggested that this grid-like morphology impacts the etching anisotropy, which could be improved by varying the delay between two orthogonally polarized laser pulses.

7.
Opt Express ; 26(21): 27965-27977, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30469853

ABSTRACT

In this report, an efficient hybrid laser technique, nanosecond laser rear-side processing and femtosecond laser-assisted selective etching (FLSE) for the manufacturing of high-density gas capillary targets, is demonstrated. Cylindrical capillary nozzles for laser betatron X-ray sources were numerically simulated, manufactured from fused silica by 3D laser inscription and characterized using interferometry and gas density reconstruction. The dependence of gas concentration profiles on the wall roughness of cylindrical channels is presented.

8.
Sci Rep ; 7(1): 5218, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701791

ABSTRACT

The evidence of multi-photon absorption enhancement by the dual-wavelength double-pulse laser irradiation in transparent sapphire was demonstrated experimentally and explained theoretically for the first time. Two collinearly combined laser beams with the wavelengths of 1064 nm and 355 nm, inter-pulse delay of 0.1 ns, and pulse duration of 10 ps were used to induce intra-volume modifications in sapphire. The theoretical prediction of using a particular orientation angle of 15 degrees of the half-wave plate for the most efficient absorption of laser irradiation is in good agreement with the experimental data. The new innovative effect of multi-photon absorption enhancement by dual-wavelength double-pulse irradiation allowed utilisation of the laser energy up to four times more efficiently for initiation of internal modifications in sapphire. The new absorption enhancement effect has been used for efficient intra-volume dicing and singulation of transparent sapphire wafers. The dicing speed of 150 mm/s was achieved for the 430 µm thick sapphire wafer by using the laser power of 6.8 W at the repetition rate of 100 kHz. This method opens new opportunities for the manufacturers of the GaN-based light-emitting diodes by fast and precise separation of sapphire substrates.

9.
Sci Rep ; 7: 39989, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067265

ABSTRACT

Understanding of material behaviour at nanoscale under intense laser excitation is becoming critical for future application of nanotechnologies. Nanograting formation by linearly polarised ultra-short laser pulses has been studied systematically in fused silica for various pulse energies at 3D laser printing/writing conditions, typically used for the industrial fabrication of optical elements. The period of the nanogratings revealed a dependence on the orientation of the scanning direction. A tilt of the nanograting wave vector at a fixed laser polarisation was also observed. The mechanism responsible for this peculiar dependency of several features of the nanogratings on the writing direction is qualitatively explained by considering the heat transport flux in the presence of a linearly polarised electric field, rather than by temporal and spatial chirp of the laser beam. The confirmed vectorial nature of the light-matter interaction opens new control of material processing with nanoscale precision.

SELECTION OF CITATIONS
SEARCH DETAIL
...